岩土力学 ›› 2020, Vol. 41 ›› Issue (2): 635-644.doi: 10.16285/j.rsm.2019.0340

• 岩土工程研究 • 上一篇    下一篇

基坑开挖引起的旁侧盾构隧道横向受力变化研究

魏纲1,张鑫海2,林心蓓1,华鑫欣3   

  1. 1. 浙江大学城市学院 土木工程系,浙江 杭州 310015;2. 浙江大学 建筑工程学院,浙江 杭州 310058; 3. 中铁二院华东勘察设计有限责任公司,浙江 杭州 310004
  • 收稿日期:2019-02-13 修回日期:2019-05-14 出版日期:2020-02-11 发布日期:2020-02-12
  • 作者简介:魏纲,男,1977年生,博士,教授,从事地下隧道与周边环境相互影响及风险评估与控制等方面的研究。
  • 基金资助:
    国家自然科学基金(No. 51778576)

Variations of transverse forces on nearby shield tunnel caused by foundation pits excavation

WEI Gang1, ZHANG Xin-hai2, LIN Xin-bei1, HUA Xin-xin3   

  1. 1. Department of Civil Engineering, Zhejiang University City College, Hangzhou, Zhejiang 310015, China; 2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang 310058, China; 3. CREEC East China Survey and Design Co., Ltd., Hangzhou, Zhejiang 310004, China
  • Received:2019-02-13 Revised:2019-05-14 Online:2020-02-11 Published:2020-02-12
  • About author:WEI Gang, male, born in 1977, PhD, Professor, Research interest: the interaction between underground tunnels and the surrounding environment, and risk assessment and control. E-mail:weig@zucc.edu.cn
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51778576).

摘要: 为研究运营盾构隧道附近基坑开挖对隧道管片受力的影响,针对基坑开挖引起旁侧盾构隧道围压变化的机制进行了分析,提出了一种能描述隧道受力-位移-再平衡过程的附加围压重分布模型,并推导出附加围压的计算公式。采用修正惯用法计算相应围压作用下的衬砌内力。根据实际工程做算例分析,研究基坑开挖对盾构隧道围压和内力的影响,并进行影响因素分析。分析结果表明:基坑开挖前隧道围压呈“钟形”分布;当基坑开挖后,隧道两侧的围压减小,基坑开挖侧的围压减小量更多;基坑开挖会使旁侧隧道正负弯矩值和正负剪力值增大,拱顶和拱底的轴力减小;随着基坑侧壁应力释放系数的增大,附加围压和附加弯矩的绝对值都会增加,而弯矩对基坑开挖卸载的响应更为明显;埋深较浅的盾构隧道对旁侧基坑开挖的影响更敏感,埋深较大的隧道,尤其是埋深大于基坑开挖深度的隧道,对旁侧基坑开挖影响的敏感度会明显降低;随着基坑与旁侧隧道净距的增加,基坑开挖对隧道的影响也会减小。

关键词: 基坑开挖, 旁侧盾构隧道, 横向受力, 围压重分布, 修正惯用法

Abstract: In order to study the influence of excavation near shield tunnels on the force of tunnel segments, the mechanism of surrounding pressure change on tunnels caused by nearby excavation is studied. A model of additional confining pressure redistribution is proposed which can describe the process of force-displacement-rebalancing of tunnels, and the calculation formula of additional confining pressure is deduced. The internal force of lining under the corresponding confining pressure is calculated by using the modified routine method. The influence of foundation pit excavation on the confining pressure and internal force of shield tunnels is studied based on the analysis of a practical engineering example, and the influencing factors are analyzed. The analysis results show that confining pressure of the tunnel before excavation presents a "bell shape" distribution. After excavation, the confining pressure on both sides of the tunnel decreases, and the confining pressure on the excavation side decreases more. The excavation of the foundation pit increases the positive and negative bending moments and the positive and negative shear forces of the nearby tunnel, and decreases the axial forces of the arch top and the arch bottom. With the increase of the stress release coefficient of the side wall of the foundation pit, both the absolute values of the additional confining pressure and of the additional bending moment will increase, and the response of bending moment to unloading of foundation pit excavation is more obvious. Shallow shield tunnel is more sensitive to the influence of the excavation of side foundation pit, and the influence of excavation of side foundation pit will decrease obviously when the burial depth of the tunnel is greater than that of the foundation pit excavation. With the increase of the distance between the foundation pit and the nearby tunnel, the influence of the foundation pit excavation on the tunnel will also be reduced.

Key words: foundation pits excavation, nearby shield tunnel, transverse force, redistribution of confining pressure, modified routine method

中图分类号: 

  • U 25
[1] 鲁泰山, 刘松玉, 蔡国军, 吴恺, 夏文俊, . 软土地层基坑开挖扰动及土体再压缩变形研究[J]. 岩土力学, 2021, 42(2): 565-573.
[2] 王国辉, 陈文化, 聂庆科, 陈军红, 范晖红, 张川, . 深厚淤泥质土中基坑开挖对基桩 影响的离心模型试验研究[J]. 岩土力学, 2020, 41(2): 399-407.
[3] 丁智, 张霄, 金杰克, 王立忠, . 基坑全过程开挖及邻近地铁隧道变形实测分析[J]. 岩土力学, 2019, 40(S1): 415-423.
[4] 张 骁, 肖军华, 农兴中, 郭佳奇, 吴 楠, . 基于HS-Small模型的基坑近接桥桩开挖 变形影响区研究[J]. 岩土力学, 2018, 39(S2): 263-273.
[5] 王克忠, 金志豪, 杨麦珍, 刘先亮, 刘 华, . 取水塔基坑开挖过程倒悬岩坎围堰渗透稳定性研究[J]. 岩土力学, 2018, 39(S2): 415-422.
[6] 张玉伟,谢永利,翁木生,. 非对称基坑开挖对下卧地铁隧道影响的离心试验[J]. , 2018, 39(7): 2555-2562.
[7] 周泽林,陈寿根,涂 鹏,张海生, . 基坑开挖对邻近隧道影响的耦合分析方法[J]. , 2018, 39(4): 1440-1449.
[8] 姜 燕,杨光华,陈富强,徐传堡,张玉成, . 湛江湾高水头跨海盾构隧道管片结构典型断面受力计算与监测反馈分析[J]. , 2018, 39(1): 275-286.
[9] 张伏光,蒋明镜, . 基坑土体卸荷平面应变试验离散元数值分析[J]. , 2018, 39(1): 339-348.
[10] 宗 翔. 基坑开挖卸载引起下卧已建隧道的纵向变形研究[J]. , 2016, 37(S2): 571-577.
[11] 郭鹏飞,杨龙才,周顺华,宫全美,肖军华. 基坑开挖引起下卧隧道隆起变形的实测数据分析[J]. , 2016, 37(S2): 613-621.
[12] 贾夫子,王立峰,逯武全,杨开放. 基坑开挖对近邻地铁车站和隧道的影响[J]. , 2016, 37(S2): 673-678.
[13] 王立峰,庞 晋,徐云福,杨开放,. 基坑开挖对近邻运营地铁隧道影响规律研究[J]. , 2016, 37(7): 2004-2010.
[14] 张治国,赵其华,徐 晨,胡力绳,. 基于影像源法的基坑开挖对邻近单桩影响简化分析[J]. , 2016, 37(7): 2011-2020.
[15] 陈 昆,闫澍旺,孙立强,王亚雯,. 开挖卸荷状态下深基坑变形特性研究[J]. , 2016, 37(4): 1075-1082.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 刚,李术才,王明斌. 渗透压力作用下加锚裂隙岩体围岩稳定性研究[J]. , 2009, 30(9): 2843 -2849 .
[2] 刘玉成,曹树刚,刘延保. 可描述地表沉陷动态过程的时间函数模型探讨[J]. , 2010, 31(3): 925 -931 .
[3] 杨建民,郑 刚. 基坑降水中渗流破坏归类及抗突涌验算公式评价[J]. , 2009, 30(1): 261 -264 .
[4] 周 华,王国进,傅少君,邹丽春,陈胜宏. 小湾拱坝坝基开挖卸荷松弛效应的有限元分析[J]. , 2009, 30(4): 1175 -1180 .
[5] 罗 强 ,王忠涛 ,栾茂田 ,杨蕴明 ,陈培震. 非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J]. , 2011, 32(S1): 732 -0737 .
[6] 石 崇 ,徐卫亚 ,张 玉 ,李德亮 ,刘 和. 基于元胞自动机模型的堆积体动力学参数研究[J]. , 2011, 32(6): 1795 -1800 .
[7] 王云岗 ,章 光 ,胡 琦. 斜桩基础受力特性研究[J]. , 2011, 32(7): 2184 -2190 .
[8] 汪成兵. 均质岩体中隧道围岩破坏过程的试验与数值模拟[J]. , 2012, 33(1): 103 -108 .
[9] 卢坤林,朱大勇,杨 扬. LU Kun-lin,  ZHU Da-yong,  YANG Yang 均质边坡准三维安全系数实用计算曲线[J]. , 2012, 33(S2): 111 -117 .
[10] 邓华锋,朱 敏,李建林,王 宇,罗 骞,原先凡. 砂岩Ⅰ型断裂韧度及其与强度参数的相关性研究[J]. , 2012, 33(12): 3585 -3591 .