岩土力学 ›› 2020, Vol. 41 ›› Issue (3): 961-969.doi: 10.16285/j.rsm.2019.0477

• 基础理论与实验研究 • 上一篇    下一篇

高温作用后3D打印岩体试样力学性能初探

田威,王震,张丽,余宸,   

  1. 长安大学 建筑工程学院,陕西 西安 710061
  • 收稿日期:2019-04-23 修回日期:2020-03-28 出版日期:2020-03-11 发布日期:2020-05-26
  • 作者简介:田威,男,1981年生,博士,教授,博士生导师,主要从事岩土工程数值仿真、岩土材料细观力学分析方面的研究工作。
  • 基金资助:
    国家自然科学基金项目(No.51579013);中国矿业大学深部地下工程国家重点实验室研究基金(No.SKLGDUEK1715);中央高校资助项目(No.300102289303);长安大学研究生科研创新实践项目(No.201809)

Mechanical properties of 3D printed rock samples subjected to high temperature treatment

TIAN Wei, WANG Zhen, ZHANG Li, YU Chen   

  1. School of Civil Engineering, Chang’an University, Xi’an, Shaanxi 710061, China
  • Received:2019-04-23 Revised:2020-03-28 Online:2020-03-11 Published:2020-05-26
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51579013), the Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology(SKLGDUEK1715), the Central University Funding Project (300102289303) and Chang’an University Graduate Research Innovation Practice Project (201809).

摘要: 实际岩土工程中经常遇到高温环境,研究3D打印岩体试样在高温作用后的力学性能对促进3D打印技术在工程领域的应用具有重要意义。以GS19砂和呋喃树脂作为打印基材,运用3D打印技术制备内部结构高度一致的岩体试样,研究不同温度作用后3D打印岩体试样的力学性能,结合电镜扫描试验从微观层面上分析不同温度作用后3D打印岩体试样力学性能产生变化的原因。提出了3D打印岩体试样的最优力学温度,并研究了含预制裂隙的3D打印岩体试样在最优力学温度作用后的破坏特征。研究表明:3D打印岩体试样的单轴抗压强度与劈裂抗拉强度随温度的不断升高均呈现先增大后降低的规律,最优力学温度为150 ℃;在最优力学温度作用后,含不同倾角预制裂隙的3D打印岩体试样的破坏过程包含压密、微裂纹萌生、裂纹稳定扩展、贯通破坏4个阶段,裂纹的初始萌生位置均出现在预制裂隙处但随着预制裂隙倾角的变化而有所不同,扩展路径总是趋向于荷载加载的方向并大致呈中心对称形式。

关键词: 岩土工程, 3D打印, 高温, 力学性能, 预制裂隙

Abstract: Geotechnical engineering often encounters high temperature environment. It is important to study the mechanical properties of rock samples printed in 3D subjected to high temperature treatment to promote the application of 3D printing technology in engineering field. Using GS19 sand and furan resin as printing substrates, rock samples with highly consistent internal structure were prepared by 3D printing technology and the mechanical properties of rock samples printed in 3D subjected to different temperature treatments were studied. The reasons for the change in mechanical properties of rock samples printed in 3D at different temperatures were analyzed from the microscopic level by scanning electron microscopy. The optimal temperature of 3D printed rock samples are proposed and the failure characteristics of 3D printing rock samples with prefabricated cracks after optical mechanical temperature action are studied. The uniaxial compressive strength and splitting tensile strength of 3D printed rock samples increase first and then decrease with increasing temperature. The optical mechanical temperature is 150 ℃. After the optical mechanical temperature effect, the failure process of 3D printed rock samples with different inclined cracks includes four stages, i.e. compaction, micro-crack initiation, stable crack propagation and penetration failure. The initial crack initiation locations appear at the prefabricated cracks, but with the change in inclination of prefabricated cracks, the propagation path always tends to the direction of load loading and is approximately centrosymmetrical.

Key words: geotechnical engineering, 3D printing, high temperature, mechanical properties, prefabricated cracks

中图分类号: 

  • TU 43
[1] 蒋浩鹏, 姜谙男, 杨秀荣. 基于Weibull分布的高温岩石统计损伤 本构模型及其验证[J]. 岩土力学, 2021, 42(7): 1894-1902.
[2] 贾蓬, 杨其要, 刘冬桥, 王述红, 赵永, . 高温花岗岩水冷却后物理力学特性及微观破裂特征[J]. 岩土力学, 2021, 42(6): 1568-1578.
[3] 黄娜, 蒋宇静, 程远方, 刘日成, . 基于3D打印技术的复杂三维粗糙裂隙网络 渗流特性试验及数值模拟研究[J]. 岩土力学, 2021, 42(6): 1659-1668.
[4] 齐飞飞, 张科, 谢建斌, . 基于DIC技术的含不同节理密度类岩石试件 破裂机制研究[J]. 岩土力学, 2021, 42(6): 1669-1680.
[5] 平琦, 苏海鹏, 马冬冬, 张号, 张传亮, . 不同高温作用后石灰岩物理与动力特性试验研究[J]. 岩土力学, 2021, 42(4): 932-942.
[6] 余莉, 彭海旺, 李国伟, 张钰, 韩子豪, 祝瀚政. 花岗岩高温−水冷循环作用下的试验研究[J]. 岩土力学, 2021, 42(4): 1025-1035.
[7] 叶智刚, 王路君, 朱斌, 黄家晟, 徐文杰, 陈云敏, . 考虑热渗效应的高温管道−饱和地基相互作用研究[J]. 岩土力学, 2021, 42(3): 691-699.
[8] 熊仲明, 吕世鸿, 李运良, 赵奇峰, 李进, 谭书舜, 张向荣, 朱玉荣, 姜磊, 杨琪凡, 张宁波, 张子栋. 被动围压下黄土动态力学性能与能量耗散研究[J]. 岩土力学, 2021, 42(3): 775-782.
[9] 王本鑫, 金爱兵, 孙浩, 王树亮, . 基于DIC的含不同角度3D打印 粗糙交叉节理试样破裂机制研究[J]. 岩土力学, 2021, 42(2): 439-450.
[10] 孙文进, 金爱兵, 王树亮, 赵怡晴, 韦立昌, 贾玉春, . 基于DIC的高温砂岩劈裂力学特性研究[J]. 岩土力学, 2021, 42(2): 511-518.
[11] 王本鑫, 金爱兵, 王树亮, 孙浩, . 3D打印交叉节理试件力学破裂特性研究[J]. 岩土力学, 2021, 42(1): 39-49.
[12] 张科, 齐飞飞, 陈宇龙, . 基于3D打印和DIC技术的裂隙网络模型 变形破裂特征及填充物影响效应[J]. 岩土力学, 2020, 41(8): 2555-2563.
[13] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
[14] 师旭超, 孙运德. 线性卸荷作用下软土超孔隙水压力 变化规律分析[J]. 岩土力学, 2020, 41(4): 1333-1338.
[15] 金爱兵, 王树亮, 王本鑫, 孙浩, 陈帅军, 朱东风, . 基于DIC的3D打印交叉节理试件破裂机制研究[J]. 岩土力学, 2020, 41(12): 3862-3872.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 刚,蒋宇静,王渭明,李廷春. 新型数控岩石节理剪切渗流试验台的设计与应用[J]. , 2009, 30(10): 3200 -3209 .
[2] 于小军,施建勇,徐杨斌. 考虑各向异性的软黏土扰动状态本构模型[J]. , 2009, 30(11): 3307 -3312 .
[3] 徐 彬,殷宗泽,刘述丽. 膨胀土强度影响因素与规律的试验研究[J]. , 2011, 32(1): 44 -50 .
[4] 代仁平,郭学彬,宫全美,蒲传金,张志呈. 隧道围岩爆破损伤防护的霍普金森压杆试验[J]. , 2011, 32(1): 77 -83 .
[5] 杨 洋, 姚海林,卢 正. 蒸发条件下路基对气候变化的响应模型及影响因素分析[J]. , 2009, 30(5): 1209 -1214 .
[6] 唐朝生,施 斌,高 玮,刘 瑾. 纤维加筋土中单根纤维的拉拔试验及临界加筋长度的确定[J]. , 2009, 30(8): 2225 -2230 .
[7] 邓亚虹,夏唐代,彭建兵,李喜安,黄强兵. 水平层状场地自振频率的剪切质点系法研究[J]. , 2009, 30(8): 2489 -2494 .
[8] 左宇军 ,李术才 ,秦泗凤 ,李利平. 对隔水底板破断突水机制的突变理论分析的认识——兼对潘岳教授等提问的答复[J]. , 2011, 32(7): 2236 -2240 .
[9] 楚锡华. 颗粒材料数值样本的坐标排序生成技术[J]. , 2011, 32(9): 2852 -2855 .
[10] 王忠福 ,刘汉东 ,贾金禄 ,黄志全 ,姜 彤 . 大直径深长钻孔灌注桩竖向承载力特性试验研究[J]. , 2012, 33(9): 2663 -2670 .