岩土力学 ›› 2020, Vol. 41 ›› Issue (2): 695-706.doi: 10.16285/j.rsm.2019.0486

• 数值分析 • 上一篇    下一篇

基于修正对称和反对称分解的 三维数值流形元法应用推广

柯锦福1, 2,王水林1, 2,郑宏1, 2,杨永涛1, 2   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049
  • 收稿日期:2019-04-16 修回日期:2019-05-08 出版日期:2020-02-11 发布日期:2020-02-14
  • 作者简介:柯锦福,男,1990年生,博士,主要从事计算岩石力学方面的研究。
  • 基金资助:
    国家重点基础研究发展计划项目(973计划)(No. 2014CB047100)。

Application and promotion of a modified symmetric and anti-symmetric decomposition-based three-dimensional numerical manifold method

KE Jin-fu1, 2, WANG Shui-lin1, 2, ZHENG Hong1, 2, YANG Yong-tao1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-04-16 Revised:2019-05-08 Online:2020-02-11 Published:2020-02-14
  • Supported by:
    This work was supported by the National Program on Key Basic Research Project of China (973 Program) (2014CB047100).

摘要: 详细地介绍了基于修正对称和反对称分解(MSAD)的三维数值流形元法,并提出一个针对三维数值流形元法(3D NMM)中应用罚函数法施加位移约束和材料边界条件时罚系数的选取公式。在基于MSAD的三维数值流形元法中,引入了Bathe隐式时间积分方案,编写了基于统一强度理论和非关联流动法则的理想塑性本构模型,实现了三维弹塑性开挖问题模拟。将基于MSAD的三维数值流形元法应用到非线性动力学研究中,案例研究结果表明:Bathe隐式时间积分方案和基于MSAD的三维数值流形元法在处理大转动和长持续时间的非线性动力学问题时能够很好地保障模拟结果的稳定性,同时保证守恒体系动能和角动量的守恒。再次验证了MSAD理论,在模拟大转动问题时,MSAD具有很好的稳定性和较高的计算精度,能够合理地从变形梯度增量中分离出转动和应变,精确地更新转动应力,而不会产生错误体积膨胀问题。

关键词: 修正对称和反对称分解(MSAD), 三维数值流形元法(3D NMM), 非线性动力学, Bathe隐式时间积分, 罚系数选取公式, 三维弹塑性开挖

Abstract: A detailed introduction to a modified symmetric and anti-symmetric decomposition (MSAD) based three-dimensional numerical manifold method (3D NMM) is given, and a formula to select the penalty factor of penalty method in 3D NMM is proposed. In the MSAD-based 3D NMM, a Bathe implicit time integration scheme is introduced, an ideal plastic constitutive model with the unified strength theory and non-associated flow rule is developed, and a simulation of a 3D elastic-plastic excavation problem is conducted. The MSAD-based 3D NMM is used to study nonlinear dynamics. The results show that: The Bathe implicit time integration scheme and the MSAD-based 3D NMM are able to ensure the stability of the simulation results for nonlinear dynamics problems with large rotation and long-time duration, and to maintain the conservation of kinetic energy and angular momentum for the conservative system. The MSAD theory is double-verified, in the simulation of large rotation problems, showing that it has good stability and high computational precision, and it is able to reasonably separate the rotation and strain apart from the incremental deformation gradient, and accurately update the rotational stress without causing the problem of false volume expansion.

Key words: modified symmetric and anti-symmetric decomposition(MSAD), three-dimensional numerical manifold method (3D NMM), nonlinear dynamics, Bathe implicit time integration, formula to select the penalty factor, three-dimensional elastic-plastic excavation

中图分类号: 

  • O 241
[1] 黄智刚, 左清军, 吴立, 陈福榜, 胡圣松, 朱盛, . 水岩作用下泥质板岩软化非线性机制研究[J]. 岩土力学, 2020, 41(9): 2931-2942.
[2] 耿 哲,李树忱,赵世森,张靖宇. 泥水平衡盾构顶推力非线性动力学分析与应用研究[J]. , 2018, 39(S1): 469-476.
[3] 刘传孝,王 龙,刘星辉,庄 帅,于绍波,. 深埋煤层应力松弛状态演化试验与动力学分析[J]. , 2016, 37(6): 1588-1596.
[4] 刘 镇,周翠英,房 明. 隧道变形失稳过程的非线性动力学分析与破坏判据研究[J]. , 2010, 31(12): 3887-3893.
[5] 刘传孝. 坚硬顶板运动特征的数值模拟及非线性动力学分析[J]. , 2005, 26(5): 759-762.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[2] 张宜虎,周火明,邬爱清. 结构面网络模拟结果后处理研究[J]. , 2009, 30(9): 2855 -2861 .
[3] 邴 慧 ,何 平. 不同冻结方式下盐渍土水盐重分布规律的试验研究[J]. , 2011, 32(8): 2307 -2312 .
[4] 范书立 ,陈健云 ,张俊清. 波浪荷载作用下斜向抗拔桩的承载特性分析[J]. , 2012, 33(1): 301 -306 .
[5] 胡 存,刘海笑,黄 维. 考虑循环载荷下饱和黏土软化的损伤边界面模型研究[J]. , 2012, 33(2): 459 -466 .
[6] 杨 峰,阳军生. 一种二阶锥线性化方法在上限有限元中的应用研究[J]. , 2013, 34(2): 593 -599 .
[7] 朱 福、战高峰、佴 磊、. 天然软土地基路堤临界高度一种计算方法研究[J]. , 2013, 34(6): 1738 -1744 .
[8] 陈善民,周洪峰,孟松兔,骆晓明,. 海堤工程软基土工布加筋的抗滑作用分析[J]. , 2003, 24(4): 661 -665 .
[9] 苏永华,邹志鹏,赵明华. 基于模糊集重心理论的岩体分类[J]. , 2007, 28(6): 1118 -1122 .
[10] 杨泰华 ,龚建伍 ,汤 斌 ,俞 晓 ,贺怀建 . 不同变位模式下无黏性土非极限被动土压力计算分析[J]. , 2013, 34(10): 2979 -2983 .