岩土力学 ›› 2019, Vol. 40 ›› Issue (S1): 329-340.doi: 10.16285/j.rsm.2019.0527

• 岩土工程研究 • 上一篇    下一篇

三峡库区巫山金鸡岭滑坡成因机制与变形特征

闫国强1,殷跃平2,黄波林3,张枝华4,代贞伟5   

  1. 1. 中国地质大学(武汉)工程学院,湖北 武汉 430074;2. 中国地质环境监测院,北京 100081; 3. 三峡大学 防灾减灾湖北省重点实验室,湖北 宜昌 443002;4. 208地质队,重庆 400700;5. 中国地质调查局武汉地质调查中心,湖北 武汉 430205
  • 收稿日期:2019-03-17 出版日期:2019-08-01 发布日期:2019-08-16
  • 通讯作者: 殷跃平,男,1960年生,博士,研究员,博士生导师,自然资源部地质灾害防治指导中心首席科学家, 主要从事地质灾害防治及研究工作E-mail:yinyp@cigem.cn E-mail:1491095791@qq.com.cn
  • 作者简介:闫国强,男,1992年生,博士研究生,主要从事水库地质灾害防治与岸坡劣化机理研究
  • 基金资助:
    国家重点研发计划项目(No.2018YFC1504803);三峡后续工作地质灾害防治项目(No.000121 2019C C60 001)&(ID:2018102849);中国地质调查局项目(No.DD20190637)

Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region

YAN Guo-qiang1, YIN Yue-ping2, HUANG Bo-lin3, ZHANG Zhi-hua4, DAI Zhen-wei5   

  1. 1. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China; 2. China Institute of Geo-environment Monitoring, CGS, Beijing, 100081, China; 3. Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang, Hubei 443002, China; 4. 208 Geological Team, Chongqing, 400700, China; 5. Wuhan Centre of China Geological Survey, Wuhan, Hubei 430205, China
  • Received:2019-03-17 Online:2019-08-01 Published:2019-08-16
  • Supported by:
    This work was supported by the National Key R & D Program(2018YFC1504803); Geological Hazard Prevention and Control Project for Follow-up Work of the Three Gorges (000121 2019C C60 001) & (ID:2018102849), and Project from China Geological Survey(DD20190637).

摘要: 三峡库区新城区迁建多采用就地后靠方式,工程扰动叠加强降雨往往诱发滑坡失稳。基于重庆巫山江东小区金鸡岭滑坡,对其影响因素和成因机制进行探讨。工程扰动不仅是传统认为的后缘加载、前缘削脚作用,更重要的是坡体表层土方堆填阻断了滑坡体地表水泄流通道,使地表水向地下水转化。强降雨作用下滑坡体内地下水位明显升高,导致金鸡岭滑坡2018年8月1日前后发生较大变形。采取降水井抽排地下水等应急处置后,滑坡变形明显趋缓,可见工程扰动导致的地下水升高是该滑坡诱发的关键因素。数值模拟表明,工程扰动后稳定系数明显降低,对应堆填区渗流场变化明显,渗流加剧,孔隙水压力、水力梯度、总水头上升,结合达西定律与有效应力原理可知渗透力增加,抗剪强度削弱,诱发滑坡变形。

关键词: 三峡库区, 边坡工程, 金鸡岭滑坡, 成因机制, 数值模拟

Abstract: The resettlement of residents in the nearest possible areas is always applied in the Three Gorges Reservoir region, China. But engineering disturbances and heavy rainfall often induce the landslide instability. This paper discusses the impact factors and formation mechanism of the Jinjiling landslide in Jiangdong district, Wushan county, Chongqing, China. It shows that the cutting and filling of slopes lead to loading of the trailing edge and removal of material from the leading edge. More importantly, the filling of channels with surface soil blocks the surface water discharge channel along the landslide body, promoting the transformation of surface water into groundwater. Therefore the groundwater level in the Jinjiling landslide rose substantially under heavy rainfall, resulting in a large deformation on approximately August 1, 2018. After emergency treatment, including groundwater pumping from the landslide body, the landslide deformation slowed considerably. It is analyzed that the groundwater rise caused by filling of the landslide body is the key factor of the landslide. The numerical simulation shows that the stability coefficient of the engineering decreases obviously after the disturbance of engineering, and the seepage field in the corresponding filling area changes obviously. The seepage is intensified, characterized as the increase in the pore water pressure, hydraulic gradient and total water head. Based on Darcy's law and principle of effective stress, the increase of seepage force and decrease of shear strength induce landslide deformation.

Key words: Three Gorges Reservoir region, slope engineering, Jinjiling landslide, formation mechanism, numerical simulation

中图分类号: 

  • P642.22
[1] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[2] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[3] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[4] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[5] 汤明高, 李松林, 许 强, 龚正峰, 祝 权, 魏 勇. 基于离心模型试验的库岸滑坡变形特征研究[J]. 岩土力学, 2020, 41(3): 755-764.
[6] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[7] 马秋峰, 秦跃平, 周天白, 杨小彬. 岩石剪切断裂面接触算法的开发与应用[J]. 岩土力学, 2020, 41(3): 1074-1085.
[8] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[9] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[10] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[11] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[12] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[13] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[14] 王伟, 陈国庆, 郑水全, 张广泽, 王栋, . 考虑张拉-剪切渐进破坏的边坡矢量和法研究[J]. 岩土力学, 2019, 40(S1): 468-476.
[15] 韩征, 粟滨, 李艳鸽, 王伟, 王卫东, 黄健陵, 陈光齐, . 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!