岩土力学 ›› 2020, Vol. 41 ›› Issue (3): 923-932.doi: 10.16285/j.rsm.2019.0585

• 基础理论与实验研究 • 上一篇    下一篇

活动性断裂带错动下隧道纵向响应的解析解

刘国钊1, 2,乔亚飞1, 2,何满潮1,樊 勇3,   

  1. 1. 同济大学 土木工程学院地下建筑与工程系,上海 200092;2. 同济大学 岩土及地下工程教育部重点实验室,上海 200092; 3. 云南省水利水电勘测设计研究院,云南 昆明 650021
  • 收稿日期:2019-03-27 修回日期:2019-07-29 出版日期:2020-03-11 发布日期:2020-05-26
  • 通讯作者: 乔亚飞,男,1990年生,博士,助理研究员,主要从事岩土力学及隧道工程方面的科研工作。E-mail: yafei.qiao@tongji.edu.cn E-mail: 320557133@qq.com
  • 作者简介:刘国钊,男,1994年生,硕士研究生,主要从事隧道与断裂带相互作用方面的研究工作。
  • 基金资助:
    上海市青年科技英才杨帆计划(No.19YF1451400);云南省交通厅科技项目(No.2017-37-2);滇中引水工程关键技术研究。

An analytical solution of longitudinal response of tunnels under dislocation of active fault

LIU Guo-zhao1, 2, QIAO Ya-fei1, 2, HE Man-chao1, FAN Yong3   

  1. 1. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 3. Yunnan Institute of Water & Hydropower Engineering Investigation, Design and Research, Kunming, Yunnan 650021, China
  • Received:2019-03-27 Revised:2019-07-29 Online:2020-03-11 Published:2020-05-26
  • Supported by:
    This work was supported by Shanghai Sailing Program(19YF1451400), the Technical Project of Yunnan Provincial Communications Department (2017-37-2) and the Key Technology Research on Water Diversion Project for Central Area of Yunnan Province.

摘要: 震害调研表明,活动性断裂带区域的隧道灾害最为严重。针对错动作用下穿越活动性断裂带隧道的纵向响应进行了研究,推导了隧道纵向力学响应的解析解并进行了验证。考虑断裂破碎带围岩力学性质较差且处于错动变形的主要影响区,将隧道沿纵向进行分区,包括错动影响区、过渡影响区和非影响区。采用Pasternak双参数弹性地基梁,假定不同分区的地基参数和计算模式不同,建立了满足变形和内力连续的隧道纵向力学解析模型并进行了求解。解析计算结果与数值模拟结果、室内试验数据基本一致,验证了解析解的正确性。结果表明:错动作用下,活动性断裂带区域的隧道内力和变形发生了显著变化;隧道纵向挠曲变形与错动方向一致,但在断裂带与上下盘交界区域发生了反向的挠曲;在正断层错动下,纵向弯矩在断裂带与上下盘交界区域达到最大值,且上、下盘区域的隧道拱顶分别出现受拉和受压区域;断裂带区域内的剪力远大于其他区域,且受到较大弯矩,隧道结构易发生破坏。上述计算结果与实际调研结果相一致,表明了提出的解析计算方法可用于活动性断裂带错动下的隧道纵向响应分析。最后,针对地基系数和断裂带宽度两个关键参数进行了敏感性分析,得到了有益规律,可为该类区域的隧道设计和施工提供技术支撑。

关键词: 活动性断裂带, 错动, 解析解, 弹性地基梁, 纵向响应

Abstract: The site investigation on earthquake damage shows that tunnels in the active fault zone suffer the most serious disasters. To investigate the longitudinal response of tunnels crossing the active fault under the dislocation, this paper proposed and verified an analytical solution of longitudinal mechanical behavior for tunnels. The active fault zone has worse mechanical properties and is the place where the main dislocation occurs. Therefore, the tunnel is divided into three parts in the longitudinal direction, including dislocation affected zone, transient zone and non-influence zone. Assuming that these three zones have different model parameters and calculation modes, an analytical mechanical model of the tunnel is formulated based on the double-parameter Pasternak elastic foundation beam. The proposed model satisfies the continuity of deformation and stress along the longitude direction. Analytical solutions agree well with the numerical simulation results and the laboratory mock-up test observations, demonstrating its good capacity. Analytical results reveal that the tunnel internal force and deformation show a significant increase in the active fault zone under the dislocation. The longitudinal deflection of the tunnel is similar to the dislocation while it has a reverse deflection at the junction zone between the fault zone and the foot or hanging wall. For the dislocation of normal fault, the longitude moment reaches its maximum value at the junction zone between the fault zone and the foot or hanging wall, and a tensile and compressive zone appear in the crown of tunnel on the side of the foot and hanging wall respectively. Shear force in the active fault zone is also bigger than that in the foot and hanging wall. All above responses result in the serious disasters in the fault zone, which is consistent with the site investigation results. Therefore, the proposed analytical solution could be used for the tunnel longitude response analysis under the dislocation. Finally, sensitivity analyses of the ground coefficient and the fault width are performed and useful results are summarized, which can provide technical supports for the tunnel design and construction in the active fault zone.

Key words: active fault, dislocation, analytical solution, elastic foundation beam, longitudinal response

中图分类号: 

  • U 45
[1] 林伟岸, 江文豪, 詹良通. 考虑真空加载过程及堆载随时间变化下 砂井地基的普遍固结解析解[J]. 岩土力学, 2021, 42(7): 1828-1838.
[2] 刘小岩, 张传庆, 史铁勇, 周辉, 胡大伟, 朱国金, 朱勇, 王超, . 跨活断层深埋隧道轴线错动位移模式试验研究[J]. 岩土力学, 2021, 42(5): 1304-1312.
[3] 秦爱芳, 江良华, 许薇芳, 梅国雄, . 连续渗透边界下非饱和土竖井地基固结解析解[J]. 岩土力学, 2021, 42(5): 1345-1354.
[4] 凌道盛, 赵天浩, 钮家军, 朱松, 单振东, . 混合非齐次边界下非饱和土一维固结解析解[J]. 岩土力学, 2021, 42(4): 883-891.
[5] 周凤玺, 周志雄, 柳鸿博, . 非均匀地基与均匀地基解答之间的相似关系: 弹性波速[J]. 岩土力学, 2021, 42(4): 892-898.
[6] 朱赛男, 李伟华, LEE Vincent W, 赵成刚, . 平面P1波斜入射下海底洞室地震响应解析分析[J]. 岩土力学, 2021, 42(1): 93-103.
[7] 黄朝煊, 袁文喜, 胡国杰, . 成层软土地基预固结处理后桩基水平 承载力估算方法[J]. 岩土力学, 2021, 42(1): 113-124.
[8] 冯庆高, 蔡兵华, 冯晓腊, 袁祥, . 侧向有限越流承压含水层中非完整井非 稳定流模型及解析解[J]. 岩土力学, 2021, 42(1): 168-176.
[9] 李建东, 王旭, 张延杰, 蒋代军, 刘德仁, 李盛, . 水蒸气增湿非饱和黄土热湿迁移规律研究[J]. 岩土力学, 2021, 42(1): 186-192.
[10] 胡安峰, 周禹杉, 陈缘, 夏长青, 谢康和, . 结构性土一维非线性大应变固结半解析解[J]. 岩土力学, 2020, 41(8): 2583-2591.
[11] 江留慧, 李传勋, 杨怡青, 张锐. 变荷载下双层地基一维非线性固结近似解析解[J]. 岩土力学, 2020, 41(5): 1583-1590.
[12] 朱彦鹏, 严紫豪, 朱轶凡. 微型钢管砂浆复合桩在土体中稳定性计算[J]. 岩土力学, 2020, 41(4): 1339-1346.
[13] 程涛, 晏克勤, 胡仁杰, 郑俊杰, 张欢, 陈合龙, 江志杰, 刘强, . 非饱和土拟二维平面应变固结问题的解析计算方法[J]. 岩土力学, 2020, 41(2): 453-460.
[14] 蒙宇涵, 张必胜, 陈征, 梅国雄, . 线性加载下含砂垫层地基固结分析[J]. 岩土力学, 2020, 41(2): 461-468.
[15] 李强, 高 松, 牛红凯, 尚艳亮, . 尾矿库浸润线解析解及适用性分析[J]. 岩土力学, 2020, 41(11): 3714-3721.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[2] 张宜虎,周火明,邬爱清. 结构面网络模拟结果后处理研究[J]. , 2009, 30(9): 2855 -2861 .
[3] 杨 光,孙 逊,于玉贞,张丙印. 不同应力路径下粗粒料力学特性试验研究[J]. , 2010, 31(4): 1118 -1122 .
[4] 闻世强,陈育民,丁选明,左威龙. 路堤下浆固碎石桩复合地基现场试验研究[J]. , 2010, 31(5): 1559 -1563 .
[5] 杨天鸿,陈仕阔,朱万成,刘洪磊,霍中刚,姜文忠. 煤层瓦斯卸压抽放动态过程的气-固耦合模型研究[J]. , 2010, 31(7): 2247 -2252 .
[6] 李卫超,熊巨华,杨 敏. 分层土中水泥土围护结构抗倾覆验算方法的改进[J]. , 2011, 32(8): 2435 -2440 .
[7] 张桂民 ,李银平 ,施锡林 ,杨春和 ,王李娟. 一种交互层状岩体模型材料制备方法及初步试验研究[J]. , 2011, 32(S2): 284 -289 .
[8] 王 伟 李小春 李 强 石 露 王 颖 白 冰. 小尺度原位瞬态压力脉冲渗透性测试系统及试验研究[J]. , 2011, 32(10): 3185 -3189 .
[9] 胡 存,刘海笑,黄 维. 考虑循环载荷下饱和黏土软化的损伤边界面模型研究[J]. , 2012, 33(2): 459 -466 .
[10] 李术才 ,赵 岩 ,徐帮树 ,李利平 ,刘 钦 ,王育奎 . 海底隧道涌水量数值计算的渗透系数确定方法[J]. , 2012, 33(5): 1497 -1504 .