岩土力学 ›› 2020, Vol. 41 ›› Issue (3): 837-848.doi: 10.16285/j.rsm.2019.0792

• 基础理论与实验研究 • 上一篇    下一篇

砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究

米博1, 2,项彦勇1, 2   

  1. 1. 北京交通大学 城市地下工程教育部重点实验室,北京 100044;2. 北京交通大学 土木建筑工程学院,北京 10004
  • 收稿日期:2019-05-05 修回日期:2019-08-28 出版日期:2020-03-11 发布日期:2020-05-25
  • 作者简介:米博,男,1992年生,博士研究生,主要从事隧道及地下工程方面的研究工作
  • 基金资助:
    国家重点基础研究发展计划(973计划)项目(No.2015CB057800);中央高校基本科研业务费专项资金(No.2017YJS148)

Model experiment and calculation analysis of excavation-seepage stability for shallow shield tunneling in sandy ground

MI Bo1, 2, XIANG Yan-yong1, 2   

  1. 1. Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China; 2. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2019-05-05 Revised:2019-08-28 Online:2020-03-11 Published:2020-05-25
  • Supported by:
    This work was supported by the National Basic Research Program of China (2015CB057800) and the Fundamental Research Funds for the Central Universities (2017YJS148).

摘要: 针对浅埋盾构隧道开挖渗流对开挖面支护压力和地层失稳模式的影响问题,考虑盾构机开挖仓渣土孔隙水压力和面板及开口率的作用,设计制作了水下地层浅埋盾构隧道的开挖渗流模型并建立了附近地层沉降的量测采集系统。在不同的稳态渗流条件下,逐渐加大盾构隧道开挖仓的进土量,量测开挖面水土压力和孔隙水压力以及附近地层沉降,并配合进行了数值模拟和极限平衡计算分析。研究发现:开挖面有效土压力随开挖体积损失的增加而降低,达到极限值后保持不变;维持开挖面稳定的必要支护压力与可以容许的地层失稳范围有关,开挖面的极限有效土压力与地层的极限失稳范围相对应,是最小的必要支护压力。渗流会使开挖面的极限有效土压力增大,与开挖面?地表之间的水头差大致呈线性关系。渗流会使开挖面前方地层的极限失稳范围增大,但对后方地层极限失稳范围的影响不大;对于开挖面?地表相对水头差较小(小于或等于0.33)的情况,渗流主要起到增大地层沉降量的作用,地层的极限失稳范围只是略有增大;对于相对水头差较大(大于0.33并小于1.00)的情况,渗流主要起到增大地层极限失稳范围的作用,而地层最大沉降量有所减小;对于相对水头差很大(大于或等于1.00)的情况,渗流对地层沉降量的影响和对极限失稳范围的影响都基本上已经达到了极限。地层的极限失稳范围可以自下而上地划分成3个部分,开挖面高度范围内的倒棱锥体,地表以下一定深度范围内的(顶部)倒棱台体,以及两者中间一定高度的(中部)倒棱台体,其中,棱锥体的纵向锥角(或纵向破裂角)及横向锥角(或横向破裂角)都随着相对水头差的增大而增大,对地层极限失稳范围的影响最为显著。

关键词: 砂土地层, 浅埋盾构隧道开挖?渗流, 开挖面稳定性, 模型试验, 计算分析

Abstract: Regarding the influence of seepage on face support pressure and ground collapse mode in shallow shield tunnel excavation, an experimental system composed of a shallow shield tunnel excavation-seepage model and a setup of measurement and data acquisition is designed and established, with consideration of pore water pressure in the excavation chamber and face plate opening ratio. The saturated soil pressures and pore water pressures at the face and settlements of surrounding strata are measured under various steady-state seepage conditions, as the soil input into the excavation chamber is gradually increased. Correspondingly, numerical simulations and limit equilibrium calculations are carried out. The major findings are: the effective earth pressure at tunnel face decreases as excavation volume loss increases, but plateaus after reaching a limit value; the necessary support pressure for face stability is related to the allowable collapse range of the stratum, the limit effective earth pressure, i.e. the minimum necessary support pressure at the tunnel face corresponds to the stratum limit collapse range. Seepage increases the limit effective earth pressure of excavation face, which shows roughly linear relationship with the hydraulic head difference between excavation face and ground surface. Seepage may increase the limit collapse range of the soil ahead of the tunnel face, but has little effect on the limit collapse range of the soil behind tunnel face; if the relative hydraulic head difference between tunnel face and ground surface is small (less than or equal to 0.33), seepage will mainly increase soil settlements, while the stratum limit collapse range only increases slightly; if the relative hydraulic head difference is large (greater than 0.33 and less than 1.00), seepage will enlarge the stratum limit collapse range, whereas the maximum settlement of stratum decreases slightly; if the relative hydraulic head difference is very large (greater than or equal to 1.00), the influences of seepage on both the settlement and limit collapse range of stratum have essentially reached their limits. The stratum limit collapse range may be divided into three zones stacking vertically: an inverted pyramid at the bottom within the height of tunnel face, an inverted prismoid at the top within a certain depth range below the ground surface and an inverted prismoid of a certain height in between; out of these three zones, the tapered angles of the inverted pyramid increase in longitudinal and transverse directions when the relative hydraulic head difference increases, and they exert the most significant influence on the limit collapse range of stratum.

Key words: sandy soil, shallow shield tunnel excavation, seepage, stability of tunnel face, model experiment, calculation analysis

中图分类号: 

  • TU441
[1] 李元海, 刘德柱, 杨硕, 孔骏, . 深部复合地层TBM隧道围岩应力与变形 规律模型试验研究[J]. 岩土力学, 2021, 42(7): 1783-1793.
[2] 王崇宇, 刘晓平, 张家强, 曹周红, . 刚性墙后有限宽度土体被动滑裂面特征试验研究[J]. 岩土力学, 2021, 42(7): 1839-1849.
[3] 刘志鹏, 孔纲强, 文磊, 王志华, 秦红玉, . 砂土地基中倾斜螺旋桩群桩上拔与水平 承载特性模型试验[J]. 岩土力学, 2021, 42(7): 1944-1950.
[4] 饶佩森, 李丹, 孟庆山, 王新志, 付金鑫, 雷学文, . 循环荷载作用下钙质砂地基土压力分布特征研究[J]. 岩土力学, 2021, 42(6): 1579-1586.
[5] 郭明伟, 马欢, 杨忠明, 王斌, 董学超, 王水林, . 常泰长江大桥施工阶段大型沉井基础沉降变形分析[J]. 岩土力学, 2021, 42(6): 1705-1712.
[6] 沈扬, 冯照雁, 邓珏, 陈锴嘉, 许俊红, . 南海珊瑚砂地基承载力模型试验研究[J]. 岩土力学, 2021, 42(5): 1281-1290.
[7] 张玉, 李大勇, 梁昊, 张雨坤, . 风电空心锥形基础水平承载特性 及土压力分布规律模型试验研究[J]. 岩土力学, 2021, 42(5): 1404-1412.
[8] 陶志刚, 任树林, 郝宇, 李强, 付强, 何满潮, . 层状反倾边坡破坏机制及NPR锚索控制效果 物理模型试验[J]. 岩土力学, 2021, 42(4): 976-990.
[9] 张纪蒙, 张陈蓉, 张凯, . 砂土中大直径单桩水平循环加载模型试验研究[J]. 岩土力学, 2021, 42(3): 783-789.
[10] 郑俊杰, 邵安迪, 谢明星, 景丹, . 不同填土宽度下设置EPS垫层挡土墙试验研究[J]. 岩土力学, 2021, 42(2): 324-332.
[11] 万志辉, 戴国亮, 龚维明, 高鲁超, 徐艺飞, . 钙质砂后压浆桩水平承载性状模型试验研究[J]. 岩土力学, 2021, 42(2): 411-418.
[12] 肖捷夫, 李云安, 胡勇, 张申, 蔡浚明, . 库水涨落和降雨条件下古滑坡变形特征 模型试验研究[J]. 岩土力学, 2021, 42(2): 471-480.
[13] 史江伟, 范燕波, 裴伟伟, 陈永辉, 张显, . 盾构下穿非连续管线变形特性及预测方法研究[J]. 岩土力学, 2021, 42(1): 143-150.
[14] 刘春林, 唐孟雄, 胡贺松, 岳云鹏, 侯振坤, 陈航, . 考虑桩底沉渣的随钻跟管桩竖向承载 特性模型试验研究[J]. 岩土力学, 2021, 42(1): 177-185.
[15] 李建东, 王旭, 张延杰, 蒋代军, 刘德仁, 李盛, . 水蒸气增湿非饱和黄土热湿迁移规律研究[J]. 岩土力学, 2021, 42(1): 186-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张建国,张强勇,杨文东,张 欣. 大岗山水电站坝区初始地应力场反演分析[J]. , 2009, 30(10): 3071 -3078 .
[2] 周火垚,施建勇. 饱和软黏土中足尺静压桩挤土效应试验研究[J]. , 2009, 30(11): 3291 -3296 .
[3] 马少坤,黄茂松,扈 萍,秦会来. 吸力强度修正对数模型在地基承载力中的应用[J]. , 2010, 31(6): 1853 -1857 .
[4] 董 云,何卫忠,孙 蔚. 隔堤填筑路堤的稳定性及变形破坏模式分析[J]. , 2010, 31(8): 2471 -2478 .
[5] 叶 斌,叶冠林,长屋淳一. 采用土工合成材料的新型护岸结构的动态数值模拟[J]. , 2010, 31(S2): 442 -446 .
[6] 屠毓敏,俞亚南. 齿坎式挡土结构物极限抗滑力研究[J]. , 2009, 30(1): 105 -108 .
[7] 石 崇,徐卫亚,周家文,张金龙. 节理面透射模型及其隔振性能研究[J]. , 2009, 30(3): 729 -734 .
[8] 庞大鹏,陈剑平,王丹微. 节理网络分形在隧道超前地质预报中的应用[J]. , 2009, 30(5): 1415 -1420 .
[9] 孙 博,周仲华,张虎元,张永霞,郑 龙. 夯土建筑遗址表面温度变化特征及预报模型[J]. , 2011, 32(3): 867 -871 .
[10] 林 萍 ,叶冠林 ,陈 楠 ,王建华 ,桥本正. 冻结法施工旁通道的冻土压力现场监测方法[J]. , 2011, 32(8): 2555 -2560 .