岩土力学 ›› 2020, Vol. 41 ›› Issue (5): 1721-1729.doi: 10.16285/j.rsm.2019.0963

• 岩土工程研究 • 上一篇    下一篇

TBM岩体可掘性预测及其分级研究

吴鑫林1,2,张晓平1,2,刘泉声1,2,李伟伟3,黄继敏3   

  1. 1. 武汉大学 土木建筑工程学院,湖北 武汉 430072;2. 武汉大学 岩土与结构工程安全湖北省重点实验室,湖北 武汉 430072; 3. 中国水利水电第三工程局有限公司,陕西 西安 710024
  • 收稿日期:2019-07-04 修回日期:2019-09-16 出版日期:2020-05-11 发布日期:2020-07-07
  • 通讯作者: 张晓平,男,1982年生,博士,教授,博士生导师,主要从事岩石力学、工程地质及地下工程等方面的研究工作。E-mail: jxhkzhang@ 163. com E-mail:2013301550088@whu.edu.cn
  • 作者简介:吴鑫林,男,1996年生,硕士研究生,主要从事TBM施工隧洞岩体分级的研究工作。
  • 基金资助:
    国家自然科学基金面上项目资助(No. 51978541, No. 41941018, No. 51839009)。

Prediction and classification of rock mass boreability in TBM tunnel

WU Xin-lin1,2, ZHANG Xiao-ping1,2, LIU Quan-sheng1,2, LI Wei-wei3, HUANG Ji-min3   

  1. 1. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Geotechnical and Structural Engineering Safety of Hubei Province, Wuhan University, Wuhan, Hubei 430072, China; 3. Manufacturing and Installation Branch Sinohyaro Bureau 3 Co., Ltd, Xi’an, Shaanxi 710024,China
  • Received:2019-07-04 Revised:2019-09-16 Online:2020-05-11 Published:2020-07-07
  • Supported by:
    This work was supported by the The General Program of National Natural Science Foundation of China(51978541, 41941018, 51839009).

摘要: 全断面硬岩隧道掘进机(tunnel boring machine, TBM)对岩体条件极其敏感,且其前期投入较大,准确地评估岩体可掘性、预测TBM掘进性能对TBM隧道施工至关重要。基于来自中国、伊朗两国涵盖3种不同岩性的5条TBM施工引水隧洞约300组现场数据,以现场贯入度指数FPI为岩体可掘性评价指标,分析了岩石单轴抗压强度UCS、岩体完整性指数 、岩体主要结构面与洞轴线的夹角?、隧洞直径D等与岩体可掘性之间的关系;探讨了适用于岩体可掘性研究的岩体参数统一方法,进一步建立了精度较高的(相关系数为0.768)岩体可掘性经验预测方法。基于该预测方法,运用K中心聚类分析方法,将岩体可掘性分为6类,探讨了不同岩体可掘性条件下TBM平均单刀推力、刀盘转速分布规律,相应成果可为实际工程中TBM施工隧洞岩体可掘性评估、掘进参数的选择、施工进度的安排提供一定的指导。

关键词: 隧道掘进机(TBM), 可掘性预测, 围岩分级, 掘进参数

Abstract: Due to the extremely high sensitivity of tunnel boring mechine(TBM)performance to rock mass conditions and its huge early investment, it is of great value to evaluate the rock mass boreability and predict the TBM performance. In this study, about 300 sets of field data from China and Iran are collected, covering three different rock types and 5 TBM tunnels. FPI (field penetration index) is selected as the evaluation index of rock mass boreability. Specifically, the relationships between rock uniaxial compressive strength(UCS), rock mass integrity index , angle between main structural plane of rock mass and axis of the tunnel ?, tunnel diameter, D and rock mass boreability are systematically analyzed. In addition, a unified approach of rock mass parameters which is suitable for the study of rock mass boreability is discussed in detail, and an empirical prediction model of rock mass boreability with relatively high accuracy ( 0.768) is further established. Based on this model and supplemented by K-center clustering method, the boreability of rock mass are classified into 6 groups, which are then applied to the exploration of the distribution of average cutter thrust and cutterhead speed under various of rock mass boreability conditions. The findings in our work shed light on the evaluation of rock mass boreability, the selection of operational parameters as well as the arrangement of TBM tunnel construction schedule.

Key words: tunnel boring mechine(TBM), boreability prediction, rock mass classification, boring parameters

中图分类号: 

  • TU 470
[1] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[2] 刘鹤, 刘泉声, 唐旭海, 罗慈友, 万文恺, 陈磊, 潘玉丛, . TBM护盾−围岩相互作用荷载识别方法[J]. 岩土力学, 2019, 40(12): 4946-4954.
[3] 翟淑芳,周小平,毕 靖, . TBM滚刀破岩的广义粒子动力学数值模拟[J]. , 2018, 39(7): 2699-2707.
[4] 刘泉声,赵怡凡,张晓平,孔晓璇. 灰岩隧道掘进机隧道点荷载试验评价岩石强度方法的研究与探讨[J]. , 2018, 39(3): 977-984.
[5] 陈卫忠,马池帅,田洪铭,杨建平,. TBM隧道施工期岩爆预测方法探讨[J]. , 2017, 38(S2): 241-249.
[6] 马池帅,陈卫忠,田洪铭,杨建平,. 基于TBM掘进参数的岩石强度估算方法探讨[J]. , 2017, 38(S2): 295-303.
[7] 黄 兴,刘泉声,彭星新,雷广峰,魏 莱,. 引大济湟工程TBM挤压大变形卡机计算分析与综合防控[J]. , 2017, 38(10): 2962-2972.
[8] 冀佩琦,张晓平,张 旗, . 延脆性变化对隧道掘进机刀具破岩过程及其破坏模式影响的颗粒元模拟分析[J]. , 2016, 37(S2): 724-734.
[9] 刘泉声,潘玉丛,孔晓璇,刘建平,时 凯,崔先泽,黄诗冰,. TBM滚刀贯入过程中泥岩破坏特征试验研究[J]. , 2016, 37(S1): 166-174.
[10] 张琼方,夏唐代,丁 智,黄小斌,林存刚,. 盾构近距离下穿对已建地铁隧道的位移影响及施工控制[J]. , 2016, 37(12): 3561-3568.
[11] 田 昊,李术才,薛翊国,邱道宏,苏茂鑫,王 凯. 基于钻进能量理论的隧道凝灰岩地层界面识别及围岩分级方法[J]. , 2012, 33(8): 2457-2464.
[12] 胡盛明 胡修文. 基于量化的GSI系统和Hoek-Brown 准则的岩体力学参数的估计[J]. , 2011, 32(3): 861-866.
[13] 肖亚勋 冯夏庭 陈炳瑞 丰光亮 张照太 明华军. 深埋隧洞极强岩爆段隧道掘进机半导洞掘进岩爆风险研究[J]. , 2011, 32(10): 3111-3118.
[14] 陈炜韬,王明年,魏龙海,王玉锁. 黏质土围岩分级指标的界限值确定[J]. , 2008, 29(9): 2446-2450.
[15] 王玉锁,王明年,童建军,魏龙海. 砂类土体隧道围岩压缩模量的试验研究[J]. , 2008, 29(6): 1607-1612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[3] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[4] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[5] 康厚荣, ,雷明堂,张谢东,赵杰华. 贵州省公路工程岩溶环境区划[J]. , 2009, 30(10): 3032 -3036 .
[6] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[7] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[8] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[9] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[10] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .