岩土力学 ›› 2020, Vol. 41 ›› Issue (6): 2122-2131.doi: 10.16285/j.rsm.2019.1057

• 数值分析 • 上一篇    下一篇

劲芯水泥土桩承载路堤渐进式失稳破坏机制

张振1, 2,张朝1, 2,叶观宝1, 2,王萌1, 2,肖彦1, 2,程义3   

  1. 1. 同济大学 地下建筑与工程系,上海 200092;2. 同济大学 岩土及地下工程教育部重点实验室,上海 200092; 3. 杭州都市高速公路有限公司,浙江 杭州 310024
  • 收稿日期:2019-06-17 修回日期:2019-11-21 出版日期:2020-06-11 发布日期:2020-08-02
  • 作者简介:张振,男,1984年生,博士,副教授,硕士生导师,主要从事软基处理研究与教学工作。
  • 基金资助:
    国家自然科学基金(No.51508408,No.41772281);中央高校基本科研业务费专项资金(No.22120180106);浙江省交通投资集团有限公司科技项目计划(No.201813)。

Progressive failure mechanism of stiffened deep mixed column-supported embankment

ZHANG Zhen1, 2, ZHANG Zhao1, 2, YE Guan-bao1, 2, WANG Meng1, 2, XIAO Yan1, 2, CHENG Yi3   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 3. Hangzhou Metropolitan Expressway Co., Ltd., Hangzhou, Zhejiang 310024, China
  • Received:2019-06-17 Revised:2019-11-21 Online:2020-06-11 Published:2020-08-02
  • Contact: 叶观宝,男,1964年生,博士,教授,博士生导师,主要从事软土地基处理技术及理论研究。E-mail: ygb1030@126.com E-mail:dyzhangzhen@126.com
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51508408, 41772281), the Fundamental Research Funds for the Central Universities(22120180106) and the Research Program of Zhejiang Communications Investment Group Co., Ltd.(201813).

摘要: 劲芯水泥土桩是一种软土地基处理的新方法,近年来已成功应用于公路、铁路路基处理工程中。然而由于人们对其承载路堤的失稳破坏机制认识不足,无法正确指导设计。采用反映桩体材料破坏后特征的应变软化模型,模拟劲芯水泥土桩承载路堤失稳破坏1g模型试验,通过分析路堤失稳破坏过程中桩体塑性区的开展和桩身受力的变化情况,研究了桩体的破坏顺序及其破坏模式。结果表明:路堤失稳过程中,劲芯水泥土桩并非同时发生破坏,路面正下方桩体首先发生受压破坏,坡面下方桩体自坡脚至坡肩依次发生弯剪破坏;由于桩体的存在,路基中滑动面并非完全穿过桩体破坏位置。基于桩体破坏顺序、破坏模式、受力情况变化,以及荷载传递规律,阐释了劲芯水泥土桩承载路堤渐进式失稳破坏机制。采用现行规范中基于残余强度的柔性桩处理方法,计算的安全系数与试验结果较为接近,但其适用性还需做进一步研究。

关键词: 劲芯水泥土桩, 路堤, 应变软化, 渐进式破坏, 数值模拟

Abstract: Stiffened deep mixed (SDM) column is a new ground improvement method for soft soil foundations, and has been successfully applied in ground improvement projects in roadways and railways recently. However, due to inadequate understanding of the instability mechanism of the embankment supported by SDM column, there is no mature theory to guide the design. In this paper, strain-softening model, which can reflect the post-failure behavior of column materials, was used to model the scale-down 1g model test of stability of SDM column-supported embankment. The sequence and modes of SDM column failure were investigated through examining the developments of plastic zone and force changes in SDM columns in the failure process. The results showed that the columns did not fail simultaneously in the process of embankment failure. The columns near the center of embankment failed by compression at first, followed by the sequence bending failures of the columns under embankment slope from the toe to the shoulder. The slip surface did not completely pass through the failure positons of the columns due to the existence of columns. Accordingly, the failure mechanism of SDM column-supported embankment was interpreted. The semi-rigid column method based on residual strength in the currently-used code yielded close factor of safety to the model test, but its feasibility still needs a further study.

Key words: stiffened deep mixed column, embankment, strain-softening, progressive failure, numerical simulation

中图分类号: 

  • TU 473
[1] 陈猛, 崔秀文, 颜鑫, 王浩, 王二磊. 岩石−钢纤维混凝土复合层抗压强度预测模型[J]. 岩土力学, 2021, 42(3): 638-646.
[2] 石峰, 卢坤林, 尹志凯. 平移模式下刚性挡土墙三维被动滑裂面的确定与土压力计算方法研究[J]. 岩土力学, 2021, 42(3): 735-745.
[3] 金爱兵, 陈帅军, 赵安宇, 孙浩, 张玉帅, . 基于无人机摄影测量的露天矿边坡数值模拟[J]. 岩土力学, 2021, 42(1): 255-264.
[4] 李军, 翟文宝, 陈朝伟, 柳贡慧, 周英操, . 基于零厚度内聚力单元的水力裂缝 随机扩展方法研究[J]. 岩土力学, 2021, 42(1): 265-279.
[5] 鲍宁, 魏静, 陈建峰. 桩承式路堤土拱效应三维离散元分析[J]. 岩土力学, 2020, 41(S1): 347-354.
[6] 孟敏强, 王磊, 蒋翔, 汪成贵, 刘汉龙, 肖杨, . 基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟[J]. 岩土力学, 2020, 41(9): 2953-2962.
[7] 陈盛原, 叶华洋, 张伟锋, 韦未, . 路堤荷载作用下柔性桩复合地基的沉降分析[J]. 岩土力学, 2020, 41(9): 3077-3086.
[8] 庄妍, 李劭邦, 崔晓艳, 董晓强, 王康宇, . 高铁荷载下桩承式路基动力响应及土拱效应研究[J]. 岩土力学, 2020, 41(9): 3119-3130.
[9] 岳建勇. 地铁交通引起的建筑物振动实测与数值模拟分析[J]. 岩土力学, 2020, 41(8): 2756-2764.
[10] 邓玮婷, 丁选明, 彭宇, . 珊瑚砂地基中膨胀混凝土桩竖向受压承载性能研究[J]. 岩土力学, 2020, 41(8): 2814-2820.
[11] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[12] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[13] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[14] 金俊超, 佘成学, 尚朋阳. 基于Hoek-Brown准则的岩石应变软化模型研究[J]. 岩土力学, 2020, 41(3): 939-951.
[15] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[2] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[3] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[4] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[5] 杨 坤,周创兵,王同旭. 多种外界随机荷载综合作用下的坝坡风险评价[J]. , 2009, 30(10): 3057 -3062 .
[6] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[7] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[8] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[9] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[10] 赵成刚,蔡国庆. 非饱和土广义有效应力原理[J]. , 2009, 30(11): 3232 -3236 .