岩土力学 ›› 2020, Vol. 41 ›› Issue (7): 2233-2240.doi: 10.16285/j.rsm.2019.1436
赵怡晴1, 2,吴常贵1, 2,金爱兵1, 2,孙浩1, 2
ZHAO Yi-qing1, 2, WU Chang-gui1, 2, JIN Ai-bing1, 2, SUN Hao1, 2
摘要: 采用核磁共振、电镜扫描、X射线衍射、单轴压缩等试验手段对某砂岩试样不同温度下(25~900 ℃)微观结构及力学性质的变化情况进行研究。研究表明:温度对砂岩试样微观结构具有重要影响,试样总孔隙率随温度的升高而升高,在150 ℃以下,由于中、大孔隙的减少,试样渗透性反而降低;当温度超过600 ℃时,中、大孔隙快速增加,试样渗透性能大幅增加;温度升高导致砂岩试样弹性模量减小、峰值应变增大以及孔隙压密阶段变长,宏观表现为脆性降低、塑性明显增强;热处理条件下,除微观结构的变化会导致砂岩试样力学强度改变外,试样矿物成分对其力学强度也具有十分重要的影响;450 ℃以下,由于矿物成分变化较小,试样力学强度主要受到孔隙度增加的影响,表现为强度随温度升高而降低;450~600 ℃,虽然孔隙率继续增长,但由于主要矿物高岭石发生脱水以及与其他离子形成新相矿物,进而导致试样强度没有随着孔隙增加而降低,反而出现一定的增长;超过600 ℃后,孔隙尤其是大孔隙的急剧增加,导致强度重新开始降低。
中图分类号:
[1] | 孙文进, 金爱兵, 王树亮, 赵怡晴, 韦立昌, 贾玉春, . 基于DIC的高温砂岩劈裂力学特性研究[J]. 岩土力学, 2021, 42(2): 511-518. |
[2] | 孟庆彬, 王杰, 韩立军, 孙稳, 乔卫国, 王刚, . 极弱胶结岩石物理力学特性及本构模型研究[J]. 岩土力学, 2020, 41(S1): 19-29. |
[3] | 张科, 李娜, 陈宇龙, 刘文连, . 裂隙砂岩变形破裂过程中应变场及红外辐射 温度场演化特征研究[J]. 岩土力学, 2020, 41(S1): 95-105. |
[4] | 魏尧, 杨更社, 申艳军, 明锋, 梁博, . 白垩系饱和冻结砂岩蠕变试验及本构模型研究[J]. 岩土力学, 2020, 41(8): 2636-2646. |
[5] | 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188. |
[6] | 朱楠, 刘春原, 赵献辉, 王文静, . 不同应力路径下K0固结结构性黏土 微观结构特征试验研究[J]. 岩土力学, 2020, 41(6): 1899-1910. |
[7] | 孙银磊, 汤连生, 刘洁, . 非饱和土微观结构与粒间吸力的研究进展[J]. 岩土力学, 2020, 41(4): 1095-1122. |
[8] | 韩超, 庞德朋, 李德建. 砂岩分级加卸载蠕变试验过程能量演化分析[J]. 岩土力学, 2020, 41(4): 1179-1188. |
[9] | 刘功勋, 李威, 洪国军, 张坤勇, CHEN Xiu-han, 施绍刚, RUTTEN Tom. 大比尺切削模型试验条件下砂岩破坏特征研究[J]. 岩土力学, 2020, 41(4): 1211-1218. |
[10] | 杜宇翔, 盛谦, 王帅, 付晓东, 罗红星, 田明, 王立纬, 梅鸿儒. 昔格达组半成岩微观结构与力学性质研究[J]. 岩土力学, 2020, 41(4): 1247-1258. |
[11] | 李斌, 黄 达, 马文著, . 层理面特性对砂岩断裂力学行为的影响研究[J]. 岩土力学, 2020, 41(3): 858-868. |
[12] | 张宗堂, 高文华, 张志敏, 唐骁宇, 邬俊, . 基于Weibull分布的红砂岩颗粒崩解破碎演化规律[J]. 岩土力学, 2020, 41(3): 877-885. |
[13] | 张善凯, 冷先伦, 盛谦, . 卢氏膨胀岩湿胀软化特性研究[J]. 岩土力学, 2020, 41(2): 561-570. |
[14] | 金爱兵, 王树亮, 魏余栋, 孙浩, 韦立昌, . 不同冷却条件对高温砂岩物理力学性质的影响[J]. 岩土力学, 2020, 41(11): 3531-3539. |
[15] | 彭守建, 冉晓梦, 许江, 陈灿灿, 宋肖徵, 闫发志, . 基于3D-DIC技术的砂岩变形局部化 荷载速率效应试验研究[J]. 岩土力学, 2020, 41(11): 3591-3603. |
|