岩土力学 ›› 2020, Vol. 41 ›› Issue (8): 2739-2745.doi: 10.16285/j.rsm.2019.1467

• 岩土工程研究 • 上一篇    下一篇

浸水环境下重载铁路改良土路基动力特性研究

商拥辉1, 2,徐林荣2, 3,蔡雨2   

  1. 1. 黄淮学院 建筑工程学院,河南 驻马店 463000;2. 中南大学 土木工程学院,湖南 长沙 410075; 3. 中南大学 高速铁路建造技术国家工程实验室,湖南 长沙 410075
  • 收稿日期:2019-08-27 修回日期:2020-01-12 出版日期:2020-08-14 发布日期:2020-10-18
  • 通讯作者: 徐林荣,男,1964年生,博士,教授,主要从事地基基础方面的教学、科研工作。E-mail: lrxu@csu.edu.cn E-mail: mlpeter@163.com
  • 作者简介:商拥辉,男,1985年生,博士,讲师,主要从事特殊土路基动力特性方面的研究。
  • 基金资助:
    国家自然科学基金(No.51078538,No.51778634);河南省教育厅重点项目(No.2B580003);河南省科技厅重点项目(No.202102310264)。

Study on dynamic characteristics of cement-stabilized expansive soil subgrade of heavy-haul railway under immersed environment

SHANG Yong-hui1, 2, XU Lin-rong2, 3, CAI Yu2   

  1. 1. College of Architecture and Civil Engineering, Huanghuai University, Zhumadian, Henan 463000, China; 2. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 3. National Engineering Laboratory for High Speed Railway Construction, Central South University, Changsha, Hunan 410075, China
  • Received:2019-08-27 Revised:2020-01-12 Online:2020-08-14 Published:2020-10-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51078538, 51778634), the Key Projects of Henan Education Department of China (20B580003) and the Key Projects of Science and Technology Department of Henan Province of China (202102310264).

摘要: 浸水入渗与重载列车动载耦合作用下路基的动力响应程度更突出,对行车安全及路基长期稳定提出更严要求。为揭示重载列车动载作用下干燥与浸水路基的动力特性,依托浩吉(浩勒报吉-吉安)重载铁路工程背景,开展循环加载400万的现场激振试验,利用激振设备和配重块组合模拟了轴重25~30 t、速度120 km/h列车动载作用。试验结果表明:路基干燥与浸水状态下,动应力与加速度沿路基深度变化趋势吻合,传至基床底层底面衰减量可达80%;浸水入渗与列车动载的加剧作用更多体现在基床表层与底层的衔接处,相同荷载条件下,衔接处浸水路基的动应力最大可提高28%;相较而言,加速度受浸水环境影响的敏感性远低于动应力;对比可知,沿路基深度范围内动应力水平远小于同位置填料的临界动应力,试验结束路基面累积变形小于5 mm,且呈收敛趋势,说明无论从动强度还是动变形角度来评估,水泥掺量3%~5%改良膨胀土用作基床底层及以下路堤填料时均能满足稳定需求。该研究成果能够对重载铁路改良膨胀土路基的精细化建设养修提供理论参考。

关键词: 水泥改良膨胀土路基, 动力特性, 激振试验, 重载铁路

Abstract: The dynamic characteristics of subgrade is aggravated under the interaction of immersed infiltration and dynamic loads of trains, which affects the safety of train operation and long-term stability. Based on the engineering background of cement-stabilized expansive soil subgrade of Hao-Ji heavy-haul railway(Haolebaoji-Ji'an), field excitation tests of subgrade with four million cycles were carried out under dry and immersed conditions to investigate the dynamic characteristics. Large-scale excitation equipment, combined with dead weights, were used to simulate the dynamic behavior of heavy-haul trains with 25-30 t axle load. The test results show that the variations of dynamic stress and acceleration along the depth of subgrade are consistent, and decay rate is 80% at the base of subgrade. The influence of immersed infiltration and dynamic load of train is more significant at the interface of between the subgrade bottom and fill. Under the same loading conditions, the dynamic stress at the interface under the immersed condition is 28% larger than for the dry condition. The acceleration is much less sensitive to the immersed environment than the dynamic stress. At the same time, the dynamic stress level along subgrade depth is much lower than the critical dynamic stress of fill in the same location. The cumulative deformation of subgrade surface under cyclic loading of 4 million times is less than 5 mm and remains stable, which indicates that the improved expansive soil with 3%-5% cement content can be used as the subgrade bottom and fill to meet the dynamic stability requirements of subgrade. The research results can provide theoretical reference for high-quality construction and aintenance of expansive soil roadbed improved by heavy-haul railway.

Key words: cement-stabilized expansive soil subgrade, dynamic characteristics, excitation test, heavy-haul railway

中图分类号: 

  • TU 443
[1] 邓华锋, 方景成, 李建林, 李冠野, 齐豫, 许晓亮. 水-岩和循环加卸载次序作用下 砂岩动力特性损伤演化规律[J]. 岩土力学, 2021, 42(2): 343-351.
[2] 杨志浩, 岳祖润, 冯怀平, 叶朝良, 周江涛, 介少龙, . 重载铁路基床表层级配碎石渗透特性试验研究[J]. 岩土力学, 2021, 42(1): 193-202.
[3] 王家全, 畅振超, 唐毅, 唐滢, . 循环荷载下加筋砾性土填料的动三轴试验分析[J]. 岩土力学, 2020, 41(9): 2851-2860.
[4] 杨志浩, 岳祖润, 冯怀平, 叶朝良, 马德良, . 级配碎石填料大三轴试验及累积塑性应变预测模型[J]. 岩土力学, 2020, 41(9): 2993-3002.
[5] 陈晓斌, 喻昭晟, 光, 张家生, 董亮, . 重载铁路基床表层级配碎石填料组构 系数应用与分析[J]. 岩土力学, 2020, 41(9): 3031-3040.
[6] 韩俊艳, 李满君, 钟紫蓝, 许敬叔, 李立云, 兰景岩, 杜修力. 基于埋地管道非一致激励振动台 试验的土层地震响应研究[J]. 岩土力学, 2020, 41(5): 1653-1662.
[7] 孙静, 公茂盛, 熊宏强, 甘霖睿, . 冻融循环对粉砂土动力特性影响的试验研究[J]. 岩土力学, 2020, 41(3): 747-754.
[8] 余挺, 邵磊. 含软弱土层的深厚河床覆盖层坝基动力特性研究[J]. 岩土力学, 2020, 41(1): 267-277.
[9] 梅慧浩, 冷伍明, 聂如松, 刘文劼, 伍晓伟, . 重载铁路路基面动应力峰值随机分布特征研究[J]. 岩土力学, 2019, 40(4): 1603-1613.
[10] 王家全, 徐良杰, 黄世斌, 刘政权. 动载下土工格栅加筋桥台挡墙承载性能分析[J]. 岩土力学, 2019, 40(11): 4220-4228.
[11] 李自强,徐湉 源,吴秋军,于 丽,王明年,王子健,. 破碎围岩重载铁路隧道基底结构动力特性现场试验研究[J]. , 2018, 39(3): 949-956.
[12] 任非凡, 何江洋, 王 冠, 赵其华, . 基于交变移动本构模型的粗粒土 动力特性数值解析[J]. 岩土力学, 2018, 39(12): 4627-4641.
[13] 詹金武,李 涛. 破碎泥岩注浆结石体动力特性的SHPB试验及其数值模拟研究[J]. , 2017, 38(7): 2096-2102.
[14] 关振长,龚振峰,罗志彬,陈仁春,何 川,. 特大断面隧道地震动力特性的振动台试验研究[J]. , 2016, 37(9): 2553-2560.
[15] 傅 华,赵大海 ,韩华强,凌 华,. 不同级配粗颗粒材料动力特性试验研究[J]. , 2016, 37(8): 2279-2284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[2] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[3] 陈 阵,陶龙光,李 涛,李海斌,王综勇. 支护结构作用的箱基沉降计算新方法[J]. , 2009, 30(10): 2978 -2984 .
[4] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[5] 荣 冠,王思敬,王恩志,刘顺桂. 白鹤滩河谷演化模拟及P2β3玄武岩级别评估[J]. , 2009, 30(10): 3013 -3019 .
[6] 陈中学,汪 稔,胡明鉴,魏厚振,王新志. 云南东川蒋家沟泥石流形成内因初探[J]. , 2009, 30(10): 3053 -3056 .
[7] 刘 斌,李术才,李树忱,钟世航. 隧道含水构造直流电阻率法超前探测研究[J]. , 2009, 30(10): 3093 -3101 .
[8] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[9] 朱泽奇,盛 谦,梅松华,张占荣. 改进的遍布节理模型及其在层状岩体地下工程中的应用[J]. , 2009, 30(10): 3115 -3121 .
[10] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .