岩土力学 ›› 2020, Vol. 41 ›› Issue (7): 2224-2232.doi: 10.16285/j.rsm.2019.1499
朱剑锋1, 2,徐日庆3, 4,罗战友1, 2,潘斌杰5,饶春义5
ZHU Jian-feng1, 2, XU Ri-qing3, 4, LUO Zhan-you1, 2, PAN Bin-jie5, RAO Chun-yi5
摘要: 为准确描述不同固化剂掺量Wg下镁质水泥固化土的力学特性,通过开展不同Wg下固化土的室内试验,提出了镁质水泥固化土的非线性本构模型。采用新型环保的镁质水泥复合固化剂加固淤泥,并对不同Wg下的镁质水泥固化土进行扫描电镜(SEM)试验、一维压缩试验和不排水三轴试验。结果发现:镁质水泥固化土具有显著的结构性,且随着Wg的增加,结构屈服应力越大,水化产生的胶凝材料增加了土颗粒间的黏结力,水化产物逐渐填充土体孔隙,镁质水泥固化土的应力?应变曲线由加工硬化型逐渐转变为加工软化型。根据试验结果,提出了一个能涵盖固化剂掺量影响并能实现应力?应变关系转型的镁质水泥固化土本构模型。算例验证该本构模型预测结果与试验结果比较吻合,能较好预测任意Wg下镁质水泥固化土的应力?应变关系。
中图分类号:
[1] | 梁文鹏, 周家作, 陈盼, 韦昌富, . 基于均匀化理论的含水合物土弹塑性本构模型[J]. 岩土力学, 2021, 42(2): 481-490. |
[2] | 王翔南, 郝青硕, 喻葭临, 于玉贞, 吕禾. 基于扩展有限元法的大坝面板脱空三维模拟分析[J]. 岩土力学, 2020, 41(S1): 329-336. |
[3] | 孟庆彬, 王杰, 韩立军, 孙稳, 乔卫国, 王刚, . 极弱胶结岩石物理力学特性及本构模型研究[J]. 岩土力学, 2020, 41(S1): 19-29. |
[4] | 黄智刚, 左清军, 吴立, 陈福榜, 胡圣松, 朱盛, . 水岩作用下泥质板岩软化非线性机制研究[J]. 岩土力学, 2020, 41(9): 2931-2942. |
[5] | 陈国兴, 李磊, 丁杰发, 赵凯, . 巨厚沉积土夹火山岩场地非线性地震反应特性[J]. 岩土力学, 2020, 41(9): 3056-3065. |
[6] | 胡安峰, 周禹杉, 陈缘, 夏长青, 谢康和, . 结构性土一维非线性大应变固结半解析解[J]. 岩土力学, 2020, 41(8): 2583-2591. |
[7] | 罗易, 张家铭, 周峙, 契霍特金, 米敏, 沈筠, . 降雨-蒸发条件下土体开裂临界 含水率演变规律研究[J]. 岩土力学, 2020, 41(8): 2592-2600. |
[8] | 魏尧, 杨更社, 申艳军, 明锋, 梁博, . 白垩系饱和冻结砂岩蠕变试验及本构模型研究[J]. 岩土力学, 2020, 41(8): 2636-2646. |
[9] | 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188. |
[10] | 喻昭晟, 陈晓斌, 张家生, 董亮, ABDOULKADER M S. 粗颗粒土的静止土压力系数非线性分析与计算方法[J]. 岩土力学, 2020, 41(6): 1923-1932. |
[11] | 李佳龙, 李钢, 于龙. 隔离非线性平面应变单元模型及其 在Drucker-Prager模型中的应用[J]. 岩土力学, 2020, 41(5): 1492-1501. |
[12] | 江留慧, 李传勋, 杨怡青, 张锐. 变荷载下双层地基一维非线性固结近似解析解[J]. 岩土力学, 2020, 41(5): 1583-1590. |
[13] | 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018. |
[14] | 邓子千, 陈嘉帅, 王建伟, 刘小文, . 基于SFG模型的统一屈服面本构模型与试验研究[J]. 岩土力学, 2020, 41(2): 527-534. |
[15] | 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560. |
|