岩土力学 ›› 2020, Vol. 41 ›› Issue (S1): 19-29.doi: 10.16285/j.rsm.2019.1520

• 基础理论与实验研究 • 上一篇    下一篇

极弱胶结岩石物理力学特性及本构模型研究

孟庆彬1, 2,王杰1,韩立军1,孙稳1,乔卫国2,王刚2   

  1. 1. 中国矿业大学 深部岩土力学与地下工程国家重点实验室,江苏 徐州 221116; 2. 山东科技大学 山东省土木工程防灾减灾重点实验室,山东 青岛 266590
  • 收稿日期:2019-09-02 修回日期:2019-11-11 出版日期:2020-06-19 发布日期:2020-06-04
  • 作者简介:孟庆彬,男,1985年生,博士后,副研究员,主要从事岩体加固理论与应用技术的研究。
  • 基金资助:
    国家自然科学基金项目(No.51704280,No.51574223);中国博士后科学基金项目(No.2015M580493,No.2017T100420);山东省土木工程防灾减灾重点实验室开放课题项目(No.CDPM2014KF03)。

Physical and mechanical properties and constitutive model of very weakly cemented rock

MENG Qing-bin1, 2, WANG Jie1, HAN Li-jun1, SUN Wen1, QIAO Wei-guo2, WANG Gang2   

  1. 1. State Key Laboratory for Geomechanics add Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; 2. Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shangdong University of Science and Technology, Qingdao, Shandong 266590, China
  • Received:2019-09-02 Revised:2019-11-11 Online:2020-06-19 Published:2020-06-04
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51704280, 51574223), the China Postdoctoral Science Foundation (2015M580493, 2017T100420), and the Opening Project Fund for Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation) (CDPM2014KF03).

摘要: 极弱胶结岩石成岩时间晚,胶结差,强度低,易风化,遇水泥化崩解,特殊的成岩环境和沉积过程形成其独特的物理与力学性质。X射线衍射试验表明,极弱胶结岩石的黏土矿物成分以高岭石为主,其含量高达54%~69%。微观结构为蜂窝状、孔隙多且连通性好,整体结构性较差,遇水易发生水化反应,造成其孔隙率增加与强度降低,在自然条件下极易风化,短时间暴露即开裂。使用MTS 815岩石力学试验系统进行极弱胶结岩石的单轴与三轴压缩试验,获得极弱胶结岩石全应力?应变曲线,揭示了极弱胶结岩石峰后应变软化与扩容变形特性。试验结果表明,岩样破坏前后具有明显的体积膨胀特性,随着围压的提高,峰后体积膨胀特性逐渐减弱。基于裂纹体积应变模型,分析了极弱胶结岩石扩容大变形破坏机制,揭示了岩体强度与扩容参数随等效塑性应变的演化规律,建立了峰前损伤扩容与峰后破裂扩容屈服准则,构建了极弱胶结岩石扩容大变形本构模型。

关键词: 极弱胶结岩石, 物理力学性质, 单轴与三轴试验, 本构模型, 屈服准则

Abstract: The very weakly cemented rock has the characteristics of late diagenesis time, poor cementation, low intensity, easy weathering and disintegration. The special diagenetic environment and deposition process lead to its unique physical and mechanical properties. The X-ray diffraction test shows that the clay mineral composition of very weakly cemented rock is mainly kaolinite with the contents as high as 54%-69%. The microstructure of very weakly cemented rocks is honeycomb, porous and well-connected, with a poor overall structure. Hydration is easy to occur when encountering water, which results in an increase in porosity and a decrease in strength. It is easily weathered and cracks after a short period of exposure. Uniaxial and triaxial compression test of very weakly cemented rock are tested with the rock mechanical system MTS 815 and the complete stress-strain curves are obtained, revealing the post-peak strain softening and expansion deformation characteristics. The experimental results show that the rock sample has obvious volume expansion characteristics before and after the failure. With the increase of the confining pressure, the post-peak volume expansion characteristics are gradually weakened. Based on the crack volumetric strain model, the large dilation deformation failure mechanism of the very weakly cemented rock is analyzed, and the evolution law of rock mass strength and dilatancy parameters with equivalent plastic strain is revealed. At the same time, the pre-peak damage dilatancy and post-peak fracture dilatancy yield criteria are established, and the dilatancy and large-deformation constitutive model of the very weakly cemented rock is constructed.

Key words: very weakly cemented rock, physical and mechanical properties, uniaxial and triaxial compression test, constitutive model, yield criterion

中图分类号: 

  • TU 452
[1] 王翔南, 郝青硕, 喻葭临, 于玉贞, 吕禾. 基于扩展有限元法的大坝面板脱空三维模拟分析[J]. 岩土力学, 2020, 41(S1): 329-336.
[2] 高玮, 胡承杰, 贺天阳, 陈新, 周聪, 崔爽, . 基于统计强度理论的破裂岩体本构模型研究[J]. 岩土力学, 2020, 41(7): 2179-2188.
[3] 朱剑锋, 徐日庆, 罗战友, 潘斌杰, 饶春义, . 考虑固化剂掺量影响的镁质水泥固化土 非线性本构模型[J]. 岩土力学, 2020, 41(7): 2224-2232.
[4] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
[5] 金青, 王艺霖, 崔新壮, 王成军, 张珂, 刘正银, . 拉拔作用下土工合成材料在风化料-废弃轮胎 橡胶颗粒轻质土中的变形行为研究[J]. 岩土力学, 2020, 41(2): 408-418.
[6] 邓子千, 陈嘉帅, 王建伟, 刘小文, . 基于SFG模型的统一屈服面本构模型与试验研究[J]. 岩土力学, 2020, 41(2): 527-534.
[7] 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560.
[8] 程昊, 唐辉明, 吴琼, 雷国平. 一种考虑水力滞回效应的非饱和土弹塑性扩展 剑桥本构模型显式算法有限元实现[J]. 岩土力学, 2020, 41(2): 676-686.
[9] 何鹏飞, 马巍, 穆彦虎, 黄永庭, 董建华, . 黄土−砂浆块界面剪切特性试验及本构模型研究[J]. 岩土力学, 2019, 40(S1): 82-90.
[10] 韩钢, 周辉, 陈建林, 张传庆, 高阳, 宋桂红, 洪望兵, . 白鹤滩水电站层间错动带工程地质特性[J]. 岩土力学, 2019, 40(9): 3559-3568.
[11] 刘斯宏, 沈超敏, 毛航宇, 孙 屹. 堆石料状态相关弹塑性本构模型[J]. 岩土力学, 2019, 40(8): 2891-2898.
[12] 张超, 杨期君, 曹文贵. 考虑峰值后区应力跌落速率的 脆岩损伤本构模型研究[J]. 岩土力学, 2019, 40(8): 3099-3106.
[13] 张凌凯, 王睿, 张建民, 唐新军, . 考虑颗粒破碎效应的堆石料静动力本构模型[J]. 岩土力学, 2019, 40(7): 2547-2554.
[14] 汪俊敏, 熊勇林, 杨骐莱, 桑琴扬, 黄强. 不饱和土动弹塑性本构模型研究[J]. 岩土力学, 2019, 40(6): 2323-2331.
[15] 汪 杰, 宋卫东, 谭玉叶, 付建新, 曹 帅, . 水平分层胶结充填体损伤本构模型及强度准则[J]. 岩土力学, 2019, 40(5): 1731-1739.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!