岩土力学 ›› 2020, Vol. 41 ›› Issue (6): 1911-1922.doi: 10.16285/j.rsm.2019.1527

• 基础理论与实验研究 • 上一篇    下一篇

断层破碎带突水突泥演化特征试验研究

张庆艳1, 2,陈卫忠1, 3,袁敬强1,刘奇1, 2,荣驰1, 2   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点试验室,湖北 武汉 430071; 2. 中国科学院大学,北京 100049;3. 山东大学 岩土与结构工程研究中心,山东 济南 250061
  • 收稿日期:2019-09-04 修回日期:2019-11-25 出版日期:2020-06-11 发布日期:2020-08-02
  • 作者简介:张庆艳,男,1990年生,博士研究生,主要从事隧道突水突泥灾害方面的研究工作。
  • 基金资助:
    湖北省创新群体研究项目(No.2018CFA012);国家自然科学基金面上基金项目(No.51879258)。

Experimental study on evolution characteristics of water and mud inrush in fault fractured zone

ZHANG Qing-yan1, 2, CHEN Wei-zhong1, 3, YUAN Jing-qiang1, LIU-Qi1, 2, RONG Chi1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan, Shandong 250061, China
  • Received:2019-09-04 Revised:2019-11-25 Online:2020-06-11 Published:2020-08-02
  • Contact: 袁敬强,男,1985年生,博士,助理研究员,主要从事隧道突水突泥灾害与注浆机制方面的研究工作。E-mail: jqyuan@whrsm.ac.cn E-mail: zhangqingyan1990@126.com
  • Supported by:
    This work was supported by the Research Project on Innovation Groups in Hubei Province (2018CFA012) and the General Program of National Natural Science Foundation of China (51879258).

摘要: 为了研究富水断层破碎带隧道突水突泥灾害演化机制,自行研制了一套可考虑质量迁移及地应力状态的大型室内突水突泥试验系统。利用该装置开展了不同水压加载方式、不同破碎带介质参数等条件的断层破碎带突水突泥灾害演化过程模拟试验。结果表明:(1)断层破碎带突水突泥灾害演化是渗流?侵蚀强耦合过程,在水压作用下,破碎带介质中的细颗粒首先发生迁移,导致充填介质孔隙结构增加,进而加速细颗粒流失,促使涌水率不断增长,随着细颗粒不断迁移流失,水流流态由层流转换为紊流,最终诱发突水突泥灾害;(2)破碎带介质初始孔隙率和施加水压越大越易诱发突水突泥,介质渗流演化特征越明显,渗流场参量如渗透率、孔隙率、雷诺数增加越快,且渗流场参量演化曲线出现突增现象;(3)梯度水压加载模式下断层破碎带介质较恒定水压加载条件下突水突泥演化特征更明显,介质发生突水突泥的临界水压更小。在此基础上,基于涌水率?时间(Q-t)、水力梯度?涌水率(i-Q)关系的流态转换分析和基于渗透率?水力梯度(k-i)关系的渗透性演化特征,建立了断层破碎带渗透演化特征概化模型。该研究结果对于断层破碎带突水突泥灾害演化机制与防治措施具有一定的理论指导价值。

关键词: 断层破碎带, 试验研究, 突水突泥, 渗透演化特征

Abstract: To investigate the mechanism of water and mud inrush in water-rich fault fracture zone, a large-scale indoor water and mud inrush test system considering mass transfer and crustal stress state is developed. The simulation test of water and mud inrush disaster evolution process in fault fracture zone under different hydraulic loading modes and medium parameters of fracture zone are carried out by using the device. Some findings are as follows. 1) Evolution of water and mud inrush disaster in fault fractured zones is a strong coupling process of seepage and erosion. Fine particles in the filling of fracture zones first migrate under the water pressure. With the continuous migration and loss of fine particles, the flow pattern changes from laminar flow to turbulent flow, which eventually leads to water and mud inrush disaster. 2) The larger initial porosity of filling in fractured zone and the higher of applied water pressure will induce the water inrush more easily. As a result, the evolution characteristics of seepage exhibit more obvious in the test, the increase of seepage field parameters such as permeability, porosity and Reynolds number are much faster, and the seepage field parameter evolution curves suddenly increase. 3) The evolution characteristics of water and mud inrush are more obvious under gradient loading than under constant water pressure loading condition, and the critical water pressure of water and mud inrush from filling is smaller. A generalized model of permeability evolution characteristics of fault is established with analysis of fluid state conversion on the relationship between water inflow rate and time (Q-t), the relationship between hydraulic gradient and water inflow rate (i-Q), and the evolution characteristics of permeability on the relationship between permeability and hydraulic gradient (k-i). The results provide guidance for evolution mechanism and prevention measures of water and mud inrush disaster in fault fractured zone.

Key words: fault fracture zone, experimental study, water and mud inrush, characteristics of seepage evolution

中图分类号: 

  • TU456
[1] 周翠英, 梁彦豪, 刘春辉, 刘镇, . 天然红层风化土成膜试验研究[J]. 岩土力学, 2020, 41(S1): 132-138.
[2] 杨括宇, 陈从新, 夏开宗, 宋许根, 张伟, 张褚强, 王田龙. 崩落法开采金属矿巷道围岩破坏机制的断层效应[J]. 岩土力学, 2020, 41(S1): 279-289.
[3] 褚峰, 张宏刚, 邵生俊, 邓国华. 人工合成类废布料纤维纱加筋黄土力学变形性质及抗溅蚀特性试验研究[J]. 岩土力学, 2020, 41(S1): 394-403.
[4] 展亚太, 王金安, 李飞, 杨柳, . 断层破碎带剪切作用下力链结构及演化 光弹试验研究[J]. 岩土力学, 2020, 41(8): 2627-2635.
[5] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[6] 雷勇, 邓加政, 刘泽宇, 李君杰, 邹根. 考虑荷载位置偏移的空洞岩石地基极限承载力 计算方法[J]. 岩土力学, 2020, 41(10): 3326-3331.
[7] 周其健, 马德翠, 邓荣贵, 康景文, 祝全兵, . 地热系统作用下红层软岩力学性能试验研究[J]. 岩土力学, 2020, 41(10): 3333-3342.
[8] 赵晓彦, 万宇豪, 张肖兵. 汶马高速公路千枚岩堆积体岩块定向性试验研究[J]. 岩土力学, 2020, 41(1): 175-184.
[9] 李志成, 冯先导, 沈立龙, . 沉管隧道含垄沟卵石垫层变形特性试验研究[J]. 岩土力学, 2019, 40(S1): 189-194.
[10] 周 辉, 郑 俊, 胡大伟, 张传庆, 卢景景, 高 阳, 张旺, . 碳酸性水环境下隧洞衬砌结构劣化机制研究[J]. 岩土力学, 2019, 40(7): 2469-2477.
[11] 刘维宁, 姜博龙, 马蒙, 高健, . 周期性排桩设计频段隔振原理性试验研究[J]. 岩土力学, 2019, 40(11): 4138-4148.
[12] 张峰瑞, 姜谙男, 江宗斌, 张广涛. 化学腐蚀-冻融综合作用下岩石损伤蠕变 特性试验研究[J]. 岩土力学, 2019, 40(10): 3879-3888.
[13] 刘 钟, 张楚福, 张 义, 吕美东, 许国平, 陈天雄, . 囊式扩体锚杆在宁波地区的现场试验研究[J]. 岩土力学, 2018, 39(S2): 295-301.
[14] 尹君凡,雷 勇,陈秋南,刘一新,邓加政,. 偏心荷载下溶洞顶板冲切破坏上限分析[J]. , 2018, 39(8): 2837-2843.
[15] 杨和平,唐咸远,王兴正,肖 杰,倪 啸,. 有荷干湿循环条件下不同膨胀土抗剪强度基本特性[J]. , 2018, 39(7): 2311-2317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[2] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[3] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[4] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[5] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[6] 杨 坤,周创兵,王同旭. 多种外界随机荷载综合作用下的坝坡风险评价[J]. , 2009, 30(10): 3057 -3062 .
[7] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[8] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[9] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[10] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .