岩土力学 ›› 2020, Vol. 41 ›› Issue (8): 2703-2711.doi: 10.16285/j.rsm.2019.1671

• 基础理论与实验研究 • 上一篇    下一篇

二维饱和土体动态孔隙率及相关动力响应特性研究

贺文海,王通   

  1. 西安科技大学 机械工程学院,陕西 西安 710054
  • 收稿日期:2019-09-27 修回日期:2020-03-04 出版日期:2020-08-14 发布日期:2020-10-18
  • 作者简介:贺文海,男,1976年生,硕士,副教授,主要从事矿山机械及矿井围岩力学特性的研究工作。
  • 基金资助:
    国家自然科学基金(No. 51105302);西安市科技计划项目高校人才服务企业项目(No. 2019217714GXRC013CG014-GXYD13.2);陕西省教育厅科研计划项目(No. 16JF019)。

Dynamic porosity and related dynamic response characteristic of two-dimensional saturated soil

HE Wen-hai, WANG Tong   

  1. College of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China)
  • Received:2019-09-27 Revised:2020-03-04 Online:2020-08-14 Published:2020-10-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51105302), the University Talents Service for Enterprises Project of Science and Technology Planning Project of Xi’an City (2019217714GXRC013CG014-GXYD13.2) and the Scientific Research Program Funded by Shaanxi Provincial Education Department (16JF019).

摘要: 饱和多孔介质的动力响应研究在众多工程领域具有重要意义。充分考虑孔隙率的变化规律与影响因素,有利于合理揭示饱和多孔介质的相关力学行为。为此,将动态孔隙率模型与用于表征饱和多孔介质动力特性的u-U-p型方程结合,构建相应的非线性力学模型,利用Comsol Multiphysis PDE求取相应的数值解,以此研究不同透水条件下,受谐波载荷激励的二维饱和土体的孔隙率、变形量及孔隙水压力的变化规律。结果表明:孔隙率的变化与土骨架的体应变及孔隙水压力直接相关,土体压缩过程中,孔隙率相应减小,土骨架与孔隙流体的相互作用增强,土体运动时所受阻力增大,其无量纲竖向位移小于孔隙率被视为常数时的情况,在此条件下,由于土体的变形量减小,其孔隙水压力也相对减小。故充分考虑动态孔隙率,有利于更加精确地研究等饱土体和多孔介质的相关力学行为。此外,土体上表面透水条件下,孔隙流体可以从土体表面自由排出,土骨架承受的载荷更大,与不透水条件相比,土体孔隙率、竖向位移、孔隙水压力等变化更为显著。

关键词: 饱和多孔介质, u-U-p型方程, Comsol Multiphysics, 动态孔隙率

Abstract: Dynamic response of saturated porous medium is of great significance in many engineering fields. The consideration of varying porosity helps to reasonably reveal the related mechanical behavior of saturated porous medium such as soil. Dynamic porosity model is combined with u-U-p equation representing the dynamic characteristic of saturated porous medium. And a new nonlinear dynamic model is established. Comsol Multiphysics PDE is used to obtain its numerical solution. On this basis, the change of porosity, deformation and pore water pressure of two-dimension saturated soil are developed under two different kinds of permeable conditions and excited by harmonic load on the surface. The result shows that the porosity relates directly to the volumetric strain and pore water pressure of soil. The loading process decreases soil porosity, and enhances the interaction between solid skeleton and pore fluid increases, therefore increases the resistance applied on solid skeleton. The dimensionless vertical displacement and pore water pressure are also low under constant porosity condition. It is useful to increase the research rationality of mechanical behavior of saturated porous medium such as soil if the dynamic porosity is considered. On the other hand, pore fluid can discharge freely from permeable top surface. So, the load that is born by soil skeleton is greater, the porosity, deformation and pore water pressure are also greater comparing with the condition under impermeable top surface .

Key words: saturated porous media, u-U-p equation, Comsol Multiphysics, dynamic porosity

中图分类号: 

  • TU 435
[1] 周凤玺, 柳鸿博, 蔡袁强, . 饱和多孔热弹性介质中Rayleigh波 传播特性分析[J]. 岩土力学, 2020, 41(1): 315-324.
[2] 宋 佳,古 泉,许成顺,杜修力,. 饱和土动力方程全显式有限元法在 OpenSees中的实现与应用[J]. , 2018, 39(9): 3477-3485.
[3] 刘 宝,苏 谦,李 婷,桂 波,. 饱和多孔介质动力响应移动单元法分析[J]. , 2017, 38(7): 2071-2079.
[4] 王荣华,章 青,夏晓舟. 含裂隙饱和多孔介质流-固耦合的扩展有限元分析[J]. , 2017, 38(5): 1489-1496.
[5] 张鹏远,白 冰,蒋思晨. 孔隙结构和水动力对饱和多孔介质中颗粒迁移和沉积特性的耦合影响[J]. , 2016, 37(5): 1307-1316.
[6] 柴华友,李天斌,张电吉,陈 健,吴巧云,柴修伟,. 饱和多孔介质表面透水性对表面波传播特性影响薄层分析法[J]. , 2016, 37(12): 3371-3379.
[7] 凌道盛 ,王 筠 ,单振东 ,丁皓江 , . 单层非饱和多孔介质一维瞬态响应半解析解[J]. , 2014, 35(1): 25-34.
[8] 杨 骁,唐 洁. 成层饱和土中考虑横向惯性的单桩纵向振动[J]. , 2013, 34(6): 1560-1566.
[9] 陈星欣,白 冰,闫瑜龙,贾丁云. 悬浮颗粒的浓度对其在饱和多孔介质中迁移和沉积特性的影响[J]. , 2012, 33(8): 2343-2348.
[10] 陈 盼,韦昌富,王吉利,伊盼盼,曹华峰. 近饱和条件下非饱和多孔介质渗流过程的数值分析[J]. , 2012, 33(1): 295-300.
[11] 马田田,韦昌富,李 幻,陈 盼,魏厚振. 考虑毛细滞回效应的非饱和多孔介质渗流与变形耦合本构模型[J]. , 2011, 32(S1): 198-204.
[12] 杨 骁,蔡雪琼. 考虑横向效应饱和黏弹性土层中桩的纵向振动[J]. , 2011, 32(6): 1857-1863.
[13] 白 冰. 空心圆柱饱和多孔介质热固结问题的解析解[J]. , 2011, 32(10): 2901-2906.
[14] 卢 正,姚海林,程 平,吴万平. 非均布列车荷载作用下软土路基的振动分析[J]. , 2010, 31(10): 3286-3294.
[15] 白 冰. 饱和多孔介质热-水-力控制方程耦合项的意义及耦合影响分析[J]. , 2006, 27(4): 519-524.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[2] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[3] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[4] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[5] 陈 松,徐光黎,陈国金,吴雪婷. 三峡库区黄土坡滑坡滑带工程地质特征研究[J]. , 2009, 30(10): 3048 -3052 .
[6] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[7] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[8] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[9] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[10] 贾宇峰,迟世春,林 皋. 考虑颗粒破碎影响的粗粒土本构模型[J]. , 2009, 30(11): 3261 -3266 .