岩土力学 ›› 2020, Vol. 41 ›› Issue (8): 2746-2755.doi: 10.16285/j.rsm.2019.2026

• 岩土工程研究 • 上一篇    下一篇

大直径后压浆灌注桩承载力和沉降的 实用计算方法研究

万志辉1, 2,戴国亮1, 2,高鲁超1, 2,龚维明1, 2   

  1. 1. 东南大学 混凝土及预应力混凝土结构教育部重点实验室,江苏 南京 211189; 2. 东南大学 土木工程学院,江苏 南京 211189
  • 收稿日期:2019-12-01 修回日期:2020-05-05 出版日期:2020-08-14 发布日期:2020-10-18
  • 作者简介:万志辉,男,1990年生,博士,助理研究员,主要从事后压浆理论与工程实践、桩基础与深基础工程等方面的科研工作。
  • 基金资助:
    国家自然科学基金(No. 51678145,No. 51878160);国家重点研发计划专项(No. 2017YFC0703408);江苏省六大人才高峰项目(No. XNY-047)。

A practical method of calculation of bearing capacity and settlement of large-diameter post-grouting piles

WAN Zhi-hui1, 2, DAI Guo-liang1, 2, GAO Lu-chao1, 2, GONG Wei-ming1, 2   

  1. 1. Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, Jiangsu 211189, China; 2. School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, China
  • Received:2019-12-01 Revised:2020-05-05 Online:2020-08-14 Published:2020-10-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51678145, 51878160), the National Key Research and Development Program of China (2017YFC0703408) and the Six Talent Peaks Project in Jiangsu Province (XNY-047).

摘要: 基于收集的139个工程中的716根试桩静载试验数据,对大直径后压浆桩承载力和沉降的实用计算方法进行研究,在统计分析的基础上给出了以土层为分类的侧摩阻力及端阻力增强系数,建立了适用于不同压浆类型的大直径后压浆桩承载力实用计算方法,并且通过大量的实测数据验证了该方法的可靠性。为了考虑后压浆对大直径桩基础沉降控制的影响,在未经压浆的大直径桩基础沉降计算方法的基础上引入了后压浆沉降影响系数,基于统计分析给出了后压浆沉降影响系数的建议取值范围,提出了一种适用于不同土层的大直径后压浆桩沉降计算经验预估方法,最后通过工程实例验证了该方法的适用性。该研究成果纳入了中华人民共和国行业标准《公路桥涵地基与基础设计规范》(JTJ3363-2019)及工程建设行业标准《公路桥梁灌注桩后压浆技术规程》(T/CECS G: D67-01-2018),可为后压浆技术的广泛应用起到推动作用。

关键词: 大直径后压浆桩, 竖向承载力, 增强系数, 统计分析, 沉降计算, 后压浆沉降影响系数

Abstract: Based on the static load test data of 716 test piles collected from 139 projects, the practical calculation method of bearing capacity and settlement of large-diameter post-grouted piles was studied. The improvement coefficients of the side friction and base resistance of soil layer were given primarily based on statistics analysis, and the practical calculation approach for the bearing capacity of large-diameter post-grouted piles applicable to different grouting types was presented. The reliability of the proposed approach was verified by a large number of measured data. Moreover, the influence coefficient of post-grouting settlement was introduced based on the settlement calculation method of large-diameter pile foundation without grouting. Based on the statistical analysis, the recommended range of influence coefficient of post-grouting settlement was given, and an empirical estimation method for calculating settlement of large-diameter post-grouted piles suitable for different soil layers was proposed. Finally, the applicability of the proposed method was verified using engineering examples. The research results have been incorporated into the industry standard of the People's Republic of China Code for design of ground base and foundation of highway bridges and culverts (JTJ 3363-2019) and the industry standard of national project construction Technical specification for post-grouting of cast-in-place pile of highway bridges (T/CECS G: D67-01-2018), which can promote the wide application of post-grouting technique.

Key words: large-diameter post-grouted pile, bearing capacity, improvement coefficient, statistical analysis, settlement calculation, influence coefficient of post-grouting settlement

中图分类号: 

  • TU 473
[1] 孙壮壮, 马刚, 周伟, 王一涵, 陈远, 肖海斌. 颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J]. 岩土力学, 2021, 42(2): 430-438.
[2] 贺志军, 雷皓程, 夏张琦, 赵炼恒. 多层软土地基中单桩沉降与内力位移分析[J]. 岩土力学, 2020, 41(2): 655-666.
[3] 骆顺天, 杨凡杰, 周辉, 张传庆, 王旭宏, 吕涛, 朱勇, 卢景景, . 基于统计分析的地下厂房边墙最大收敛变形 多指标预测方法 [J]. 岩土力学, 2020, 41(10): 3415-3424.
[4] 袁维, 刘尚各, 聂庆科, 王伟, . 基于冲切破坏模式的嵌岩桩桩端溶洞顶板 临界厚度确定方法研究[J]. 岩土力学, 2019, 40(7): 2789-2798.
[5] 王忠瑾, 方鹏飞, 谢新宇, 王奎华, 王文军, 李金柱, . 带肋竹节桩竖向抗压承载力影响因素分析[J]. 岩土力学, 2018, 39(S2): 381-388.
[6] 任连伟,周桂林,顿志林,何停印,杨权威,张敏霞,. 采空区建筑地基适宜性及沉降变形计算工程实例分析[J]. , 2018, 39(8): 2922-2932.
[7] 万志辉,戴国亮,龚维明, . 超厚细砂地层大直径后压浆桩荷载传递计算与分析[J]. , 2018, 39(4): 1386-1394.
[8] 周海娟,马 刚,袁 葳,周 伟,常晓林, . 堆石颗粒压缩破碎强度的尺寸效应[J]. , 2017, 38(8): 2425-2433.
[9] 任连伟,顾红伟,彭怀风,周 杨,. 三种工况下扩底楔形桩承载特性模型试验研究[J]. , 2017, 38(7): 1887-1893.
[10] 林 军,蔡国军,刘松玉,邹海峰, . 基于孔压静力触探力学分层的土体边界识别方法研究[J]. , 2017, 38(5): 1413-1423.
[11] 李 刚,张金利,杨 庆, . 不同成因沉积土物理力学指标概率统计分析[J]. , 2017, 38(12): 3565-3572.
[12] 周佳锦,龚晓南,王奎华,张日红,王孟波,. 层状地基中静钻根植竹节桩单桩沉降计算[J]. , 2017, 38(1): 109-116.
[13] 王惠昌,王 斌,蒋仁贵,王彩莲,张 华,. 用桩顶垫层压缩量法计算刚性桩复合地基最大沉降量[J]. , 2016, 37(S2): 442-448.
[14] 庄海洋,张艳书,薛栩超,徐 烨,. 深软场地地铁狭长深基坑变形特征实测与已有统计结果的对比分析[J]. , 2016, 37(S2): 561-570.
[15] 张家发,叶加兵,陈劲松,李少龙. 碎石颗粒形状测量与评定的初步研究[J]. , 2016, 37(2): 343-349.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 颜天佑,李同春,赵兰浩,季薇薇. 三维边坡稳定分析的有限元弹塑性迭代解法[J]. , 2009, 30(10): 3102 -3108 .
[2] 王 刚,蒋宇静,王渭明,李廷春. 新型数控岩石节理剪切渗流试验台的设计与应用[J]. , 2009, 30(10): 3200 -3209 .
[3] 潘 岳,戚云松,李爱武. 对“深埋隧道开挖围岩失稳突变模型研究”的讨论[J]. , 2009, 30(10): 3210 -3214 .
[4] 倪骁慧,朱珍德,赵 杰,李道伟,冯夏庭. 岩石破裂全程数字化细观损伤力学试验研究[J]. , 2009, 30(11): 3283 -3290 .
[5] 李利平,李术才,崔金声. 岩溶突水治理浆材的试验研究[J]. , 2009, 30(12): 3642 -3648 .
[6] 马文涛,孔 亮. 进化-最小二乘支持向量机的边坡稳定性估计[J]. , 2009, 30(12): 3876 -3880 .
[7] 孙树林,李 方,谌 军. 掺石灰黏土电阻率试验研究[J]. , 2010, 31(1): 51 -55 .
[8] 吴 健,谢新宇,朱向荣. 饱和土体一维复杂非线性固结特性研究[J]. , 2010, 31(1): 81 -86 .
[9] 陈昌禄,邵生俊,郑万坤,牛洪涛. 黄土高边坡的三维动力稳定性分析 ——以固原九龙山边坡为例[J]. , 2010, 31(1): 229 -232 .
[10] 许兴旺,李肖伦. 湿陷性黄土地区客运专线路基沉降观测分析[J]. , 2010, 31(1): 233 -236 .