岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 293-300.doi: 10.16285/j.rsm.2020.0000

• 基础理论与实验研究 • 上一篇    下一篇

考虑应力变化速率的岩石脆性评价指标

匡智浩1, 2,李邵军1,杜灿勋3,邱士利1,吝曼卿4,杜三林3   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 华能西藏水电安全工程技术研究中心,西藏 林芝 860061;4. 武汉工程大学 资源与安全工程学院,湖北 武汉 430073
  • 收稿日期:2021-07-04 修回日期:2021-08-21 出版日期:2022-06-30 发布日期:2022-07-14
  • 通讯作者: 李邵军,男,1974年生,博士,现任研究员,主要从事深部岩体力学与工程安全方面的研究工作。E-mail: sjli@whrsm.ac.cn E-mail:kuangzhihao17@mails.ucas.edu.cn
  • 作者简介:匡智浩,男,1996年生,硕士,主要从事深部岩体岩爆风险性评估研究。
  • 基金资助:
    国家自然科学基金资助项目(No.U1765206,No.41877256);湖北省重点研发计划项目(No.2020BCB078);中国科学院重点部署项目(No.KFZD-SW-423)。

Evaluation index of rock brittleness considering stress change rate

KUANG Zhi-hao1, 2, LI Shao-jun1, DU Can-xun3, QIU Shi-li1, LIN Man-qing4, DU San-lin3   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Huaneng Tibet Hydropower Safety Engineering Technology Research Center, Nyingchi, Tibet 860061, China; 4. School of Resources and Safety Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073, China
  • Received:2021-07-04 Revised:2021-08-21 Online:2022-06-30 Published:2022-07-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(U1765206, 41877256), the Key Research and Development Program of Hubei Province(2020BCB078) and the Key Research Program of the Chinese Academy of Sciences(KFZD-SW-423).

摘要: 脆性作为岩石的重要的力学指标,对深部岩体性态评价以及灾害预防具有重要意义。岩石应力−应变曲线能够很好地表征岩石的脆性。考虑到现有基于应力−应变曲线的脆性指标大多都只对曲线的一部分进行分析,且少有指标能够准确地应用于岩石II类曲线中,对整体判断的缺乏可能会导致工程应用上适应性及可靠性不足的情况。针对现有脆性指标普遍存在的物理意义模糊、评估结果与岩石脆性的关系非连续等问题,综合考量岩石应力−应变曲线中峰前应力上升速率、峰后应力跌落速率以及峰值点应变值对岩石脆性的影响,提出了一种物理意义明确、计算结果与岩石脆性之间的关系是单调且连续的岩石脆性指数计算方法。选取国内外常用脆性指标对锦屏II级水电站大理岩和某铁路隧道花岗岩、变质砂岩以及片麻岩的单轴压缩试验数据进行脆性评价后进行比较,验证了指标的适用性。进一步将提出的指标应用于常规三轴试验条件下大理岩脆性分析,结果表明,该指标不仅能够量化和分类不同岩石的脆性特征,还能表征围压对岩石脆性的抑制作用。

关键词: 岩石脆性指标, 锦屏II级水电站, 铁路隧道, 全应力?应变曲线, 应力变化速率

Abstract: As an important mechanical index of rocks, brittleness is of great significance for deep rock mass behavior assessment and disaster prevention. The stress-strain curve of rock can well represent rock brittleness. Considering that most of the existing brittleness indicators based on stress-strain curves only analyze a part of the curve, and few indices can be accurately applied to the rock II type curve, lack of overall consideration may lead to the inadequate adaptability and reliability in engineering application. In order to solve those problems, such as the unclear physical meaning and the discontinuous relationship between the evaluation results and rock brittleness of the existing brittleness indices based on the complete stress-strain curve of rock, the influences of pre-peak stress rising rate, post-peak stress falling rate and peak strain on rock brittleness were analyzed, and a method of rock brittleness index with clear physical meaning, monotonous and continuous relationship between calculation results and rock brittleness was proposed. The commonly used brittleness indices were selected to compare the brittleness evaluation of the marble of Jinping II hydropower station and the granite, metamorphic sandstone and gneiss of a railway under uniaxial compression conditions, which verified the applicability of the index proposed. This novel brittleness index was further applied to the brittleness evaluation of marble under conventional triaxial test conditions. The results showed that this index could not only quantify and classify the brittleness characteristics of different rock types, but also characterize the confining pressure inhibition behaviors of rock brittleness.

Key words: rock brittleness index, Jinping II hydropower station, railway tunnel, complete stress-strain curve, stress change rate

中图分类号: 

  • TU458
[1] 李 波 ,吴 立 ,邓宗伟 ,陈 剑 ,唐爱松,. 高速铁路隧道围岩抗力系数现场试验与理论研究[J]. , 2015, 36(2): 532-541.
[2] 何本国 ,朱永全 ,孙明磊 ,张志强 ,孙元国 . 高速铁路膏溶角砾岩深埋隧道支护荷载确定方法[J]. , 2013, 34(3): 827-832.
[3] 周 毅,李术才,李利平,赵 岩,刘 钦,原小帅. 地层条件对超大断面隧道软弱破碎围岩施工影响过程规律的数值模拟分析[J]. , 2011, 32(S2): 673-678.
[4] 晏启祥,马婷婷,陈 菲. 泄水式管片衬砌泄流量对衬砌外荷载的影响研究[J]. , 2011, 32(4): 1108-1112.
[5] 叶培旭,杨新安,凌保林,张业炜. 近距离交叉隧洞爆破对既有隧道的振动影响[J]. , 2011, 32(2): 537-541.
[6] 周太全,华 渊. 东巨寺沟隧道湿喷纤维混凝土支护结构和围岩稳定性位移模糊判别[J]. , 2008, 29(5): 1377-1381.
[7] 龚 伦 ,仇文革 ,高新强,. 铁路隧道近距离下穿楼房控制爆破试验研究[J]. , 2006, 27(S1): 1089-1092.
[8] 高新强,仇文革. 深埋单线铁路隧道衬砌高水压分界值研究[J]. , 2005, 26(10): 1675-1680.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .