岩土力学 ›› 2020, Vol. 41 ›› Issue (10): 3333-3342.doi: 10.16285/j.rsm.2020.0035

• 基础理论与实验研究 • 上一篇    下一篇

地热系统作用下红层软岩力学性能试验研究

周其健1, 2,马德翠3,邓荣贵1,康景文2,祝全兵4   

  1. 1. 西南交通大学 土木工程学院,四川 成都 610031;2. 中国建筑西南勘察设计研究院有限公司,四川 成都 610051; 3. 中冶成都勘察研究总院有限公司,四川 成都 610023;4. 中国水利水电第七工程局有限公司,四川 成都 610213
  • 收稿日期:2020-01-10 修回日期:2020-06-11 出版日期:2020-10-12 发布日期:2020-11-07
  • 作者简介:周其健,男,1979年生,博士研究生,高级工程师,主要从事特殊岩土体工程特性研究。
  • 基金资助:
    四川省科学技术厅资助项目(No. 2019GFW176)。

Experimental study on mechanical properties of red-layer soft rock in geothermal systems

ZHOU Qi-jian1, 2, MA De-cui3, DENG Rong-gui1, KANG Jing-wen2, ZHU Quan-bing4   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2.China Southwest Geotechnical Investigation & Design Institute Co., Ltd., Chengdu, Sichuan 610051, China; 3. Chengdu Surveying Geotechnical Research Institute Co., Ltd. of MCC, Chengdu, Sichuan 610023, China; 4. Sinohydro Bureau 7 Co., Ltd., Chengdu, Sichuan 610213, China
  • Received:2020-01-10 Revised:2020-06-11 Online:2020-10-12 Published:2020-11-07
  • Supported by:
    This work was supported by the Science & Technology Foundation of Sichuan Province (2019GFW176).

摘要: 地热能源是目前绿色建筑的发展趋势,但红层软岩分布地区出现的系列建筑地基病害问题与地源热系统关系尚不清楚。依托成都某建筑群事故调查项目,研究了有无地热系统作用下泥岩、石膏岩的工程特性,并基于室内试验模拟,研究了不同加热方式、不同温度及不同浸水时间等因素下岩石宏观力学特性和微观结构特征。结果表明:(1)同一场地有无地热系统对岩石力学性质影响甚微,但有地热系统时岩体中裂隙发育数量明显增多,累积张开度明显增大;(2)随着浸泡时间增加,泥岩最大含水率可达30%以上,石膏岩含水率超不过15%,泥岩浸水软化效应较石膏岩显著,二者力学指标随含水率增加呈负指数型下降,石膏岩因晶粒大小不同,离散性大;(3)天然状态下石膏岩呈脆性破坏,泥岩呈延性破坏,石膏岩水岩界面溶蚀作用效应显著,随着石膏岩由表及里溶蚀加剧,温度变化效应对岩体内生裂隙萌发起一定促进作用;(4)在20~50 ℃温度变化范围内,石膏岩抗压强度随温度呈抛物线变化,而泥岩单调升高;(5)地热管与岩体间填筑不密实容易形成渗水通道,改变水动力条件,动水作用下使石膏岩裂隙及软弱夹层溶蚀加剧,形成更大空洞,从而诱发沉降。

关键词: 泥岩, 石膏岩, 地热系统, 试验研究, 建筑下沉

Abstract: Geothermal energy is the development trend of green building. However, it is not clear about the relationship between the problems of building foundation impairment and the geothermal system in red-layer soft rock areas. Based on an accident investigation project of building clusters in Chengdu, the engineering characteristics of mudstone and gypsum rock with or without geothermal system were studied, and the macro-mechanical and micro-structural characteristics of rock under different heating methods, different temperatures and different soaking times were studied as well. The results show that: 1) At the same site, there is little influence of geothermal system on rock mechanical properties, but when geothermal system is in place, the number of fissures and the cumulative opening has an obvious increase. 2) With the increase of soaking time, the maximum water content of mudstone can reach more than 30%, the water content of gypsum can not exceed 15%, the water softening effect of mudstone is more obvious than that of gypsum, and the mechanical index of mudstone decreases with the increase of water content. 3) In the natural state, the gypsum rock is brittle and the mudstone is ductile; the water-rock interface of the gypsum rock has a significant effect of dissolution, and the dissolution of the gypsum rock is intensified from the surface to the interior. 4) In the temperature ranges from 20 °C to 50 °C, the compressive strength of gypsum rock parabolically changes with temperature, while that of mudstone monotonously increases. 5) The loose filling between geothermal pipe and rock mass is easy to form seepage pathway and change the hydrodynamic condition. Under the action of flowing water, the rock mass at the crack of gypsum rock and the weak interlayer dissolves, forming big cavity and inducing building subsidence.

Key words: mud-stone, gypsum rock, geothermal system, experimental study, building subsidence

中图分类号: 

  • TU 452
[1] 李福林, 杨健, 刘卫群, 范振华, 杨玉贵, . 单轴压缩条件下泥岩加载速率变化效应研究[J]. 岩土力学, 2021, 42(2): 369-378.
[2] 周翠英, 梁彦豪, 刘春辉, 刘镇, . 天然红层风化土成膜试验研究[J]. 岩土力学, 2020, 41(S1): 132-138.
[3] 褚峰, 张宏刚, 邵生俊, 邓国华. 人工合成类废布料纤维纱加筋黄土力学变形性质及抗溅蚀特性试验研究[J]. 岩土力学, 2020, 41(S1): 394-403.
[4] 薛彦瑾, 王起才, 马丽娜, 张戎令, 代金鹏, 王强, . 高速铁路无砟轨道地基泥岩膨胀性分类分级研究[J]. 岩土力学, 2020, 41(9): 3109-3118.
[5] 李昆鹏, 赵晓彦, 肖 典, 李 晋. 酸雨水化学损伤加剧粉砂质泥岩崩解机制研究[J]. 岩土力学, 2020, 41(8): 2693-2702.
[6] 张庆艳, 陈卫忠, 袁敬强, 刘奇, 荣驰, . 断层破碎带突水突泥演化特征试验研究[J]. 岩土力学, 2020, 41(6): 1911-1922.
[7] 高雪峰, 张延军, 黄奕斌, 赵熠, 倪金, 马静晨. 花岗岩粗糙单裂隙对流换热特性的数值模拟[J]. 岩土力学, 2020, 41(5): 1761-1769.
[8] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[9] 付宏渊, 蒋煌斌, 邱祥, 姬云鹏, . 低应力与覆水环境下单裂隙粉砂质泥岩渗流特性[J]. 岩土力学, 2020, 41(12): 3840-3850.
[10] 雷勇, 邓加政, 刘泽宇, 李君杰, 邹根. 考虑荷载位置偏移的空洞岩石地基极限承载力 计算方法[J]. 岩土力学, 2020, 41(10): 3326-3331.
[11] 赵晓彦, 万宇豪, 张肖兵. 汶马高速公路千枚岩堆积体岩块定向性试验研究[J]. 岩土力学, 2020, 41(1): 175-184.
[12] 李志成, 冯先导, 沈立龙, . 沉管隧道含垄沟卵石垫层变形特性试验研究[J]. 岩土力学, 2019, 40(S1): 189-194.
[13] 周 辉, 郑 俊, 胡大伟, 张传庆, 卢景景, 高 阳, 张旺, . 碳酸性水环境下隧洞衬砌结构劣化机制研究[J]. 岩土力学, 2019, 40(7): 2469-2477.
[14] 付宏渊, 刘 杰, 曾 铃, 卞汉兵, 史振宁, . 考虑荷载与浸水条件的预崩解炭质泥岩 变形与强度试验[J]. 岩土力学, 2019, 40(4): 1273-1280.
[15] 刘维宁, 姜博龙, 马蒙, 高健, . 周期性排桩设计频段隔振原理性试验研究[J]. 岩土力学, 2019, 40(11): 4138-4148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 荣 冠,王思敬,王恩志,刘顺桂. 白鹤滩河谷演化模拟及P2β3玄武岩级别评估[J]. , 2009, 30(10): 3013 -3019 .
[2] 蔚立元,李术才,徐帮树. 舟山灌门水道海底隧道钻爆法施工稳定性分析[J]. , 2009, 30(11): 3453 -3459 .
[3] 刘红岩,王贵和. 节理岩体冲击破坏的数值流形方法模拟[J]. , 2009, 30(11): 3523 -3527 .
[4] 李利平,李术才,崔金声. 岩溶突水治理浆材的试验研究[J]. , 2009, 30(12): 3642 -3648 .
[5] 付宏渊,吴胜军,王桂尧. 荷载作用引起砂土渗透性变化的试验研究[J]. , 2009, 30(12): 3677 -3681 .
[6] 鲁祖德,陈从新,陈建胜,童志怡,左保成,戴旭明. 岭澳核电三期强风化角岩边坡岩体直剪试验研究[J]. , 2009, 30(12): 3783 -3787 .
[7] 喻 军,童立元,刘松玉,汤劲松. 基于优势面理论的隧道控水与模拟分析[J]. , 2009, 30(12): 3825 -3830 .
[8] 余 俊,尚守平,李 忠,任 慧. 饱和土中桩水平振动引起土层复阻抗分析研究[J]. , 2009, 30(12): 3858 -3864 .
[9] 兰四清,王玉林,谢康和. 径向双侧壁排水软土地基固结数学模型及解析解[J]. , 2009, 30(12): 3871 -3875 .
[10] 张莎莎,谢永利,杨晓华,戴志仁. 典型天然粗粒盐渍土盐胀微观机制分析[J]. , 2010, 31(1): 123 -127 .