岩土力学 ›› 2020, Vol. 41 ›› Issue (10): 3374-3384.doi: 10.16285/j.rsm.2020.0109

• 基础理论与实验研究 • 上一篇    下一篇

基于离心模型试验的复杂层状软岩楔形 滑坡变形演化研究

陈达,许强,郑光,蔡国军,彭双麒,王卓,何攀   

  1. 地质灾害防治与地质环境保护国家重点实验室(成都理工大学),四川 成都 610059
  • 收稿日期:2020-02-06 修回日期:2020-06-06 出版日期:2020-10-12 发布日期:2020-11-07
  • 通讯作者: 许强,男,1968年生,博士,教授,博士生导师,主要从事地质灾害评价预测与防治处理方面的研究。E-mail: xq@cdut.edu.cn E-mail:296846153@qq.com
  • 作者简介:陈达,男,1995年生,硕士研究生,主要从事地质灾害机制及防治方面的研究
  • 基金资助:
    国家创新研究群体科学基金(No. 41521002);国家自然科学基金重点项目(No. 41630640);地质灾害防治与地质环境保护国家重点实验室自主研究课题(No. SKLGP2015Z023)。

Study on deformation evolution of wedge landslide in complex layered soft rock based on centrifugal model test

CHEN Da, XU Qiang, ZHENG Guang, CAI Guo-jun, PENG Shuang-qi, WANG Zhuo, HE Pan   

  1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, Sichuan 610059, China
  • Received:2020-02-06 Revised:2020-06-06 Online:2020-10-12 Published:2020-11-07
  • Supported by:
    This work was supported by the National Innovation Research Group Foundation of China (41521002), the Key Program of National Natural Science Foundation of China (41630640) and the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology (SKLGP2015Z023).

摘要: 楔形破坏是岩质边坡中的一种重要失稳形式,以往研究主要是通过块体理论从力学角度进行稳定性分析,一定程度上忽略了地质作用的孕育演化过程。为全面分析岩质边坡楔形破坏的灾害孕育机制及变形特征,以略阳县官家咀中桥楔体滑坡为地质原型,基于现场地质调查和分析,设计了具有两组结构面的层状楔形体岩质斜坡概化离心模型,并成功完成离心模型试验。结果表明:(1)不同于传统楔形滑坡大块体滑落,当坡体岩性较软、节理裂隙发育时,楔体将沿着楔形面交线方向呈解体式滑动;此类楔体滑坡的楔形形态差,难以从几何上进行识别,岩性条件、结构条件是其控制性因素。(2)这类具层状楔形软岩斜坡表观变形不明显,在重力作用下,变形主要从坡体内部向坡表、坡底纵向延伸,楔形滑体部分压力、应变变化较小,主要表现为拉张破坏。(3)滑坡可形成多级楔形滑面,并发育多级失稳楔体,坡体自动搜索最优滑动面,发生不同规模的崩滑灾害;在1 260 s、50g时出现一级楔体失稳,2 016 s、92g时二级深层楔体失稳。该试验揭示了在重力作用下此类楔体滑坡变形演化过程以及成灾模式,为深入认识该类滑坡以及灾害防治提供了参考依据。

关键词: 楔形滑坡, 离心模型试验, 多级楔形滑面, 变形演化, 成灾模式

Abstract: Wedge failure is an important form of instability in rock slopes. Previous research mainly used the block theory to analyze the stability from the mechanical point of view, and to a certain extent ignored the evolution process of geological action. To comprehensively analyze the hazard incubation mechanism and deformation characteristics of the wedge failure of rock slopes, a layered wedge rock slope generalized centrifugal model with two sets of structural planes was designed based on the geological prototype of Guanjiazui Zhongqiao wedge landslide in Lueyang county. With the field geological investigation and analysis, the centrifugal model test was successfully completed. The results show that: 1) Different from the traditional wedge landslide, the wedge will slide in a disintegrated manner along the intersection line of the wedge plane when the lithology of the slope is soft and the joint fissure is developed. This kind of wedge-shaped landslide is difficult to be identified geometrically due to its poor shape, and lithologic and structural conditions are its controlling factors. 2) Meanwhile, it is also found that the apparent deformation of such layered wedge-shaped soft rock slopes is not obvious. Under the action of gravity, the deformation mainly extends from the inside of the slope to the surface and bottom of the slope longitudinally, and the pressure and strain changes of the wedge-shaped sliding body are small, which is mainly manifested as tensile failure. 3) In addition, the landslide can form a multi-level wedge sliding surface, and develop multi-level instability wedges. The slope automatically searches for the "optimal" sliding surface, causing collapse and landslide disasters of different scales. At 1 260 s and 50g, a first-level wedge instability occurs, and at 2 016 s and 92g, the secondary deep wedges fails. The test reveals the deformation evolution process and disaster model of this kind of wedge landslide under the action of gravity, which provides a reference basis for the in-depth understanding of this type of landslide and the disaster prevention.

Key words: wedge landslide, centrifuge model test, multi-stage wedge sliding surface, deformation evolution, disaster pattern

中图分类号: 

  • TU 411
[1] 肖捷夫, 李云安, 胡勇, 张申, 蔡浚明, . 库水涨落和降雨条件下古滑坡变形特征 模型试验研究[J]. 岩土力学, 2021, 42(2): 471-480.
[2] 史江伟, 范燕波, 裴伟伟, 陈永辉, 张显, . 盾构下穿非连续管线变形特性及预测方法研究[J]. 岩土力学, 2021, 42(1): 143-150.
[3] 丁楚, 余文瑞, 史江伟, 张宇亭, 陈永辉, . 水平循环荷载下桩基变形特性的离心模型试验研究[J]. 岩土力学, 2020, 41(8): 2659-2664.
[4] 黄晓虎, 易武, 黄海峰, 邓永煌. 优势流入渗与坡体变形关系研究及应用[J]. 岩土力学, 2020, 41(4): 1396-1403.
[5] 汤明高, 李松林, 许 强, 龚正峰, 祝 权, 魏 勇. 基于离心模型试验的库岸滑坡变形特征研究[J]. 岩土力学, 2020, 41(3): 755-764.
[6] 王国辉, 陈文化, 聂庆科, 陈军红, 范晖红, 张川, . 深厚淤泥质土中基坑开挖对基桩 影响的离心模型试验研究[J]. 岩土力学, 2020, 41(2): 399-407.
[7] 蔡正银, 代志宇, 徐光明, 任国峰. 颗粒粒径和密实度对砂土K0值影响的 离心模型试验研究 [J]. 岩土力学, 2020, 41(12): 3882-3888.
[8] 王钦科, 马建林, 陈文龙, 杨彦鑫, 胡中波, . 上覆土嵌岩扩底桩抗拔承载特性离心 模型试验及计算方法研究[J]. 岩土力学, 2019, 40(9): 3405-3415.
[9] 詹良通, 胡英涛, 刘小川, 陈捷, 王瀚霖, 朱斌, 陈云敏. 非饱和黄土地基降雨入渗离心模型试验 及多物理量联合监测[J]. 岩土力学, 2019, 40(7): 2478-2486.
[10] 周小文, 程 力, 周 密, 王 齐, . 离心机中球形贯入仪贯入黏土特性[J]. 岩土力学, 2019, 40(5): 1713-1720.
[11] 徐 鹏, 蒋关鲁, 王 珣, 黄昊威, 黄 哲, 王智猛, . 面板对加筋土挡墙影响的离心模型试验研究[J]. 岩土力学, 2019, 40(4): 1427-1432.
[12] 李世俊, 马昌慧, 刘应明, 韩玉珍, 张 彬, 张 嘎, . 离心模型试验与数值模拟相结合研究 采空边坡渐进破坏特性[J]. 岩土力学, 2019, 40(4): 1577-1583.
[13] 李 林, 李镜培, 孙德安, 龚卫兵, . 考虑沉桩效应的群桩非线性荷载-沉降解析[J]. 岩土力学, 2019, 40(2): 668-677.
[14] 梁 波, 厉彦君, 凌学鹏, 赵宁雨, 张青松, . 离心模型试验中微型土压力盒土压力测定[J]. 岩土力学, 2019, 40(2): 818-826.
[15] 周和祥, 马建林, 张凯, 罗朝洋, 杨柏, . 沉井下沉阻力离心模型试验研究[J]. 岩土力学, 2019, 40(10): 3969-3976.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[2] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[3] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[4] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[5] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[6] 蒋小伟,万 力,王旭升,武 雄,程惠红. 利用RQD估算岩体不同深度的平均渗透系数和平均变形模量[J]. , 2009, 30(10): 3163 -3167 .
[7] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[8] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[9] 贾宇峰,迟世春,林 皋. 考虑颗粒破碎影响的粗粒土本构模型[J]. , 2009, 30(11): 3261 -3266 .
[10] 倪骁慧,朱珍德,赵 杰,李道伟,冯夏庭. 岩石破裂全程数字化细观损伤力学试验研究[J]. , 2009, 30(11): 3283 -3290 .