岩土力学 ›› 2020, Vol. 41 ›› Issue (11): 3621-3631.doi: 10.16285/j.rsm.2020.0131

• 基础理论与实验研究 • 上一篇    下一篇

隧道突涌水机制与渗透破坏灾变过程模拟研究

周宗青1, 2, 3, 4,李利平1, 2,石少帅1, 2,刘聪1,高成路1,屠文锋1,王美霞1   

  1. 1. 山东大学 齐鲁交通学院,山东 济南 250002;2. 山东大学 岩土与结构工程研究中心,山东 济南 250061; 3. 长江水利委员会长江科学院 水利部岩土力学与工程重点实验室,湖北 武汉 430010; 4. 山东科技大学 山东省矿山灾害预防控制省部共建国家重点实验室培育基地,山东 青岛 266590
  • 收稿日期:2020-01-09 修回日期:2020-04-13 出版日期:2020-11-11 发布日期:2020-12-25
  • 作者简介:周宗青,男,1988年生,博士,副教授,博士生导师,主要从事隧道突水灾变机制与演化过程模拟分析方法等方面的研究工作。
  • 基金资助:
    国家自然科学基金(No. 51709159,No. 51911530214);山东省重点研发计划(No. 2019GSF111030);长江科学院开放研究基金资助项目(No. CKWV2018468/ KY);山东省矿山灾害预防控制省部共建国家重点实验室培育基地开放基金资助项目(No. MDPC201802)

Study on tunnel water inrush mechanism and simulation of seepage failure process

ZHOU Zong-qing1, 2, 3, 4, LI Li-ping1, 2, SHI Shao-shuai1, 2, LIU Cong1, GAO Cheng-lu1, TU Wen-feng1, WANG Mei-xia1   

  1. 1. School of Qilu Transportation, Shandong University, Jinan, Shandong 250002, China; 2. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan, Shandong 250061, China; 3. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Yangtze River Scientific Research Institute, Wuhan, Hubei 430010 China; 4. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590 China
  • Received:2020-01-09 Revised:2020-04-13 Online:2020-11-11 Published:2020-12-25
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51709159, 51911530214), Shandong Provincial Key R&D Program of China (2019GSF111030), the CRSRI Open Research Program (CKWV2018468/KY) and the State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology (MDPC201802).

摘要: 针对岩体渐进破坏和充填体渗透失稳两种典型突涌水灾害,阐述了动力扰动、开挖卸荷与高水压三者联合作用下岩体渐进破裂机制,以及高渗透压作用下充填体“变强度-变渗透性-变黏度”的渗透破坏机制。针对渗透破坏突涌水的变黏度机制,采用DEM-CFD耦合计算方法,开展了流体黏度对渗透破坏机制影响的定性模拟研究,分析了流体黏度对平均接触力、流量(流速)、孔隙率、颗粒运移过程、运移轨迹以及临界水力梯度的影响规律。结果表明,低黏度条件下的临界水力梯度比高黏度条件下的要小,换言之,低黏度条件下充填体更容易发生渗透破坏;平均接触力对水力梯度临界值的响应最为敏感,而流量难以准确反映该信息。从渗透破坏突涌水的变黏度机制这单一角度出发(不考虑渗透性增大的影响),随着黏性介质流入水体,流体黏度会增大,但流动速度会降低,两者共同作用下反而阻碍了渗透破坏过程的发展。最后,采用DEM-CFD计算方法,对工程尺度突涌水过程进行了模拟,再现了突涌水优势通道的形成与扩展过程,并指出了实现突涌水灾变机制模拟所需解决的参数选取与定量分析难题。

关键词: 突涌水灾害, 灾变机制, 流体黏度, 渗透破坏, DEM-CFD, 数值模拟

Abstract: In view of the two typical modes of water inrush disasters, progressive fracturing of rock mass and seepage failure of filling structure, the mechanism of progressive fracturing of rock mass under the combined effects of dynamic disturbance, excavation unloading and high water pressure is described. The seepage failure mechanism of the variable strength-variable permeability-variable viscosity of the filling structure under osmotic pressure is also expounded. For the variable viscosity mechanism of water inrush caused by seepage failure of filling structure, a qualitative simulation study on the effect of fluid viscosity on seepage failure mechanism is carried out using the DEM-CFD coupled simulation method. The effects of fluid viscosity on the average contact force, flow rate (flow velocity), porosity, particle migration process, migration trajectory and critical hydraulic gradient of the simulation model are analyzed. The results show that the critical hydraulic gradient of fluid with low viscosity is smaller than that with high viscosity. In other words, seepage failure of filling structure is more likely to occur under the action of fluid flow with low viscosity; the average contact force is especially sensitive to the response of critical value of the hydraulic gradient, however it is difficult to be accurately reflected by the flow rate. Considering only the variable viscosity mechanism of water inrush due to seepage failure (regardless of the effect of increasing permeability), as the viscous medium flows into water, the fluid viscosity would increase, but the flow velocity would decrease, and the combined action of these two changes would actually hinder the development of seepage failure process. Finally, the phenomenon of water inrush process in engineering scale is simulated using DEM-CFD method, and the formation and expansion process of the dominant channel of water inrush is reproduced. The problems of parameter selection and quantitative analysis are identified to realize the simulation of water inrush mechanism.

Key words: water inrush disasters, mechanism, fluid viscosity, seepage failure, DEM-CFD, numerical simulation

中图分类号: 

  • TU 411
[1] 陈猛, 崔秀文, 颜鑫, 王浩, 王二磊. 岩石−钢纤维混凝土复合层抗压强度预测模型[J]. 岩土力学, 2021, 42(3): 638-646.
[2] 石峰, 卢坤林, 尹志凯. 平移模式下刚性挡土墙三维被动滑裂面的确定与土压力计算方法研究[J]. 岩土力学, 2021, 42(3): 735-745.
[3] 杨春和, 张超, 李全明, 于玉贞, 马昌坤, 段志杰, . 大型高尾矿坝灾变机制与防控方法[J]. 岩土力学, 2021, 42(1): 1-17.
[4] 金爱兵, 陈帅军, 赵安宇, 孙浩, 张玉帅, . 基于无人机摄影测量的露天矿边坡数值模拟[J]. 岩土力学, 2021, 42(1): 255-264.
[5] 李军, 翟文宝, 陈朝伟, 柳贡慧, 周英操, . 基于零厚度内聚力单元的水力裂缝 随机扩展方法研究[J]. 岩土力学, 2021, 42(1): 265-279.
[6] 李利平, 朱宇泽, 周宗青, 石少帅, 陈雨雪, 屠文锋. 隧道突涌水灾害防突厚度计算方法及适用性评价[J]. 岩土力学, 2020, 41(S1): 41-50.
[7] 孟敏强, 王磊, 蒋翔, 汪成贵, 刘汉龙, 肖杨, . 基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟[J]. 岩土力学, 2020, 41(9): 2953-2962.
[8] 王明年, 江勇涛, 于丽, 董宇苍, 段儒禹, . 砂性土细颗粒起动临界水力坡降计算方法[J]. 岩土力学, 2020, 41(8): 2515-2524.
[9] 岳建勇. 地铁交通引起的建筑物振动实测与数值模拟分析[J]. 岩土力学, 2020, 41(8): 2756-2764.
[10] 邓玮婷, 丁选明, 彭宇, . 珊瑚砂地基中膨胀混凝土桩竖向受压承载性能研究[J]. 岩土力学, 2020, 41(8): 2814-2820.
[11] 毛浩宇, 徐奴文, 李彪, 樊义林, 吴家耀, 孟国涛, . 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020, 41(7): 2470-2484.
[12] 史林肯, 周辉, 宋明, 卢景景, 张传庆, 路新景, . 深部复合地层TBM开挖扰动模型试验研究[J]. 岩土力学, 2020, 41(6): 1933-1943.
[13] 张振, 张朝, 叶观宝, 王萌, 肖彦, 程义, . 劲芯水泥土桩承载路堤渐进式失稳破坏机制[J]. 岩土力学, 2020, 41(6): 2122-2131.
[14] 苏杰, 周正华, 李小军, 董青, 李玉萍, 陈柳. 基于偏振特性的下孔法剪切波到时判别问题探讨[J]. 岩土力学, 2020, 41(4): 1420-1428.
[15] 杨高升, 白冰, 姚晓亮, . 高含冰量冻土路基融化固结规律研究[J]. 岩土力学, 2020, 41(3): 1010-1018.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭军辉,程卫国,张 滨. 土工格栅低温下蠕变特性试验研究[J]. , 2009, 30(10): 3009 -3012 .
[2] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[3] 刘玉成,庄艳华. 地下采矿引起的地表下沉的动态过程模型[J]. , 2009, 30(11): 3406 -3410 .
[4] 张 波,李术才,杨学英,孙国富,葛颜慧. 三维黏弹性介质人工边界研究[J]. , 2009, 30(11): 3469 -3475 .
[5] 王 飞,王 媛,倪小东. 渗流场随机性的随机有限元分析[J]. , 2009, 30(11): 3539 -3542 .
[6] 鲁祖德,陈从新,陈建胜,童志怡,左保成,戴旭明. 岭澳核电三期强风化角岩边坡岩体直剪试验研究[J]. , 2009, 30(12): 3783 -3787 .
[7] 郦建俊,黄茂松,王卫东,陈 峥. 软土地基中扩底抗拔中长桩的极限承载力分析[J]. , 2009, 30(9): 2643 -2650 .
[8] 丁 瑜,王全才,何思明. 拉力分散型锚索锚固段荷载传递机制[J]. , 2010, 31(2): 599 -603 .
[9] 刘雪珠,陈国兴. 轨道交通振动下南京片状细砂的有效应力路径及破坏模式[J]. , 2010, 31(3): 719 -726 .
[10] 江洎洧,项 伟,唐辉明,曾 斌,黄 玲. 极限蓄水位下洞坪水库大沟湾滑坡稳定性预测[J]. , 2010, 31(3): 805 -810 .