岩土力学 ›› 2020, Vol. 41 ›› Issue (8): 2796-2804.doi: 10.16285/j.rsm.2020.0216
张晋勋,亓轶,杨昊,宋永威
ZHANG Jin-xun, QI Yi, YANG Hao, SONG Yong-wei
摘要: 地下工程盆形冻结止水结构包括位于开挖范围周围的冻结帷幕(盆壁)及开挖范围底部的水平冻结板(盆底)两部分。采用物理模型试验与数值模拟的方法,分析了北京典型富水砂卵石地层条件下盆形冻结在静水及0.5 m/d渗流条件下的温度场扩展规律。研究发现:盆形冻结技术作为冻结工法在市政工程领域的全新应用,对地下工程的施工区域能够有效起到冻结止水效果;盆形结构不同部位在不同的渗流条件会表现出不同的冻结交圈次序,静水条件下盆壁冻结管会先于盆底冻结管交圈,渗流条件下则依次是顺水流盆壁、盆底、背水面盆壁、迎水面盆壁,此时盆壁冻结是制约盆形冻结的关键因素,实际工程应重点关注盆壁冻结;冻结厚度是评价冻结效果最直观的指标,在静水条件下盆壁厚度趋于稳定,盆底水平冻结板厚度逐渐超过盆底冻结管长度且向盆内与盆外两个方向同时发展;渗流条件下,迎水面盆壁厚度最小,背水面盆壁由于绕流现象出现冻结锥体而局部厚度增大,盆底水平冻结板厚度仅向盆内单向发展。
中图分类号:
[1] | 雷华阳, 许英刚, 缪姜燕, 刘旭. 动渗耦合作用下软黏土动力特性试验研究[J]. 岩土力学, 2021, 42(3): 601-610. |
[2] | 江文豪, 詹良通. 考虑井阻效应及径向渗透系数变化下砂井 地基的大变形固结[J]. 岩土力学, 2021, 42(3): 755-766. |
[3] | 薛松, 杨志兵, 李东奇, 陈益峰. 滴状流条件下非饱和交叉裂隙分流机制研究[J]. 岩土力学, 2021, 42(1): 59-67. |
[4] | 王珂, 盛金昌, 郜会彩, 田晓丹, 詹美礼, 罗玉龙, . 应力−渗流侵蚀耦合作用下粗糙裂隙渗流特性研究[J]. 岩土力学, 2020, 41(S1): 30-40. |
[5] | 安笑, 潘华利, 欧国强, 孔玲, 李炳志, . 恒定渗流作用泥石流碎屑物质起动判别模型研究[J]. 岩土力学, 2020, 41(S1): 115-122. |
[6] | 王明年, 江勇涛, 于丽, 董宇苍, 段儒禹, . 砂性土细颗粒起动临界水力坡降计算方法[J]. 岩土力学, 2020, 41(8): 2515-2524. |
[7] | 房营光, 陈建, 谷任国, 巴凌真, 舒浩恺, . 基于有效比表面积修正的Kozeny-Carman方程 在黏土渗透中的适用性研究[J]. 岩土力学, 2020, 41(8): 2547-2554. |
[8] | 胡盛斌, 杜国平, 徐国元, 周天忠, 钟有信, 石重庆, . 基于能量测量的声呐渗流矢量法及其应用[J]. 岩土力学, 2020, 41(6): 2143-2154. |
[9] | 杨赫, 程卫民, 刘震, 王文玉, 赵大伟, 王文迪. 注水煤体有效渗流通道结构分形特征 核磁共振试验研究[J]. 岩土力学, 2020, 41(4): 1279-1286. |
[10] | 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848. |
[11] | 苏永华, 李诚诚. 强降雨下基于Green-Ampt模型的边坡稳定性分析[J]. 岩土力学, 2020, 41(2): 389-398. |
[12] | 付宏渊, 蒋煌斌, 邱祥, 姬云鹏, . 低应力与覆水环境下单裂隙粉砂质泥岩渗流特性[J]. 岩土力学, 2020, 41(12): 3840-3850. |
[13] | 刘杰, 黎照, 杨渝南, 张子睿, 唐洪宇, 高进, 申剑, . 岩石裂隙可视化渗流装置可行性及试验研究[J]. 岩土力学, 2020, 41(12): 4127-4136. |
[14] | 王明玉, 刘庆哲, 曲辞晓, 李金柱, . 基于圆盘裂隙物理模型的岩体单一 裂隙渗流规律试验研究[J]. 岩土力学, 2020, 41(11): 3523-3530. |
[15] | 崔溦, 邹旭, 李正, 江志安, 谢武, . 分形岩石裂隙中渗流扩散运动的试验研究[J]. 岩土力学, 2020, 41(11): 3553-3562. |
|