岩土力学 ›› 2020, Vol. 41 ›› Issue (8): 2796-2804.doi: 10.16285/j.rsm.2020.0216

• 数值分析 • 上一篇    下一篇

北京砂卵石地层盆形冻结的温度场扩展规律研究

张晋勋,亓轶,杨昊,宋永威   

  1. 北京城建集团有限责任公司 博士后工作站,北京 100088
  • 收稿日期:2020-03-02 修回日期:2020-05-28 出版日期:2020-08-14 发布日期:2020-10-18
  • 作者简介:张晋勋,男,1967年生,博士,教授级高级工程师,主要从事工程施工领域的研究工作。
  • 基金资助:
    北京市科学技术委员会资助项目(No. Z161100001116088)

Temperature field expansion of basin-shaped freezing technology in sandy pebble stratum of Beijing

ZHANG Jin-xun, QI Yi, YANG Hao, SONG Yong-wei   

  1. Postdoctoral Workstation, Beijing Urban Construction Group Co., Ltd., Beijing 100088, China
  • Received:2020-03-02 Revised:2020-05-28 Online:2020-08-14 Published:2020-10-18
  • Supported by:
    This work was supported by the Beijing Municipal Commission of Science and Technology Foundation (Z161100001116088)

摘要: 地下工程盆形冻结止水结构包括位于开挖范围周围的冻结帷幕(盆壁)及开挖范围底部的水平冻结板(盆底)两部分。采用物理模型试验与数值模拟的方法,分析了北京典型富水砂卵石地层条件下盆形冻结在静水及0.5 m/d渗流条件下的温度场扩展规律。研究发现:盆形冻结技术作为冻结工法在市政工程领域的全新应用,对地下工程的施工区域能够有效起到冻结止水效果;盆形结构不同部位在不同的渗流条件会表现出不同的冻结交圈次序,静水条件下盆壁冻结管会先于盆底冻结管交圈,渗流条件下则依次是顺水流盆壁、盆底、背水面盆壁、迎水面盆壁,此时盆壁冻结是制约盆形冻结的关键因素,实际工程应重点关注盆壁冻结;冻结厚度是评价冻结效果最直观的指标,在静水条件下盆壁厚度趋于稳定,盆底水平冻结板厚度逐渐超过盆底冻结管长度且向盆内与盆外两个方向同时发展;渗流条件下,迎水面盆壁厚度最小,背水面盆壁由于绕流现象出现冻结锥体而局部厚度增大,盆底水平冻结板厚度仅向盆内单向发展。

关键词: 盆形冻结, 地下工程, 砂卵石地层, 渗流, 冻结厚度

Abstract: Basin-shaped freezing technology is applied to form a water-proof structure, which consists of two parts: the frozen curtain (basin wall) around the excavation zone and the horizontal frozen body (basin bottom) at the bottom of the excavation zone. In this paper, physical model test and numerical simulation were used to study temperature field expansion of basin-shaped technology under static water and 0.5 m/d seepage condition in water-rich sandy gravel stratum of Beijing. As a new application of freezing method in the field of municipal engineering, basin-shaped freezing technology can effectively play the role of water proofing. Different parts of basin structure show different frozen orders under different seepage conditions. Under the condition of static water, the basin wall is frozen prior to the basin bottom. While under the condition of seepage, the order of the freezing intersection of different positions is basin wall along the seepage, basin bottom, basin wall on the back surface and basin wall on the face surface in sequence, the freezing of basin wall is the key factor to restrict the basin-shaped freezing under this condition, and basin wall should be focused in the actual engineering. Freezing thickness is the most direct index to evaluate freezing effect. The freezing thickness of the basin wall tends to be stable under the condition of static water, and the freezing thickness of the basin bottom gradually exceeds the length of the freezing tube at the basin bottom and develops in both directions of in and outside the basin structure. Under seepage conditions, the freezing curtain of the basin wall with the smallest thickness appears on the front-water surface, while the local thickness of the freezing curtain on the basin wall of the back-water surface increases, and the horizontal freezing plate thickness at the basin bottom is only one-way develops inside of the basin.

Key words: basin-shaped freezing method, underground engineering, sandy gravel stratum, seepage, freezing thickness

中图分类号: 

  • TU 451
[1] 雷华阳, 许英刚, 缪姜燕, 刘旭. 动渗耦合作用下软黏土动力特性试验研究[J]. 岩土力学, 2021, 42(3): 601-610.
[2] 江文豪, 詹良通. 考虑井阻效应及径向渗透系数变化下砂井 地基的大变形固结[J]. 岩土力学, 2021, 42(3): 755-766.
[3] 薛松, 杨志兵, 李东奇, 陈益峰. 滴状流条件下非饱和交叉裂隙分流机制研究[J]. 岩土力学, 2021, 42(1): 59-67.
[4] 王珂, 盛金昌, 郜会彩, 田晓丹, 詹美礼, 罗玉龙, . 应力−渗流侵蚀耦合作用下粗糙裂隙渗流特性研究[J]. 岩土力学, 2020, 41(S1): 30-40.
[5] 安笑, 潘华利, 欧国强, 孔玲, 李炳志, . 恒定渗流作用泥石流碎屑物质起动判别模型研究[J]. 岩土力学, 2020, 41(S1): 115-122.
[6] 王明年, 江勇涛, 于丽, 董宇苍, 段儒禹, . 砂性土细颗粒起动临界水力坡降计算方法[J]. 岩土力学, 2020, 41(8): 2515-2524.
[7] 房营光, 陈建, 谷任国, 巴凌真, 舒浩恺, . 基于有效比表面积修正的Kozeny-Carman方程 在黏土渗透中的适用性研究[J]. 岩土力学, 2020, 41(8): 2547-2554.
[8] 胡盛斌, 杜国平, 徐国元, 周天忠, 钟有信, 石重庆, . 基于能量测量的声呐渗流矢量法及其应用[J]. 岩土力学, 2020, 41(6): 2143-2154.
[9] 杨赫, 程卫民, 刘震, 王文玉, 赵大伟, 王文迪. 注水煤体有效渗流通道结构分形特征 核磁共振试验研究[J]. 岩土力学, 2020, 41(4): 1279-1286.
[10] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[11] 苏永华, 李诚诚. 强降雨下基于Green-Ampt模型的边坡稳定性分析[J]. 岩土力学, 2020, 41(2): 389-398.
[12] 付宏渊, 蒋煌斌, 邱祥, 姬云鹏, . 低应力与覆水环境下单裂隙粉砂质泥岩渗流特性[J]. 岩土力学, 2020, 41(12): 3840-3850.
[13] 刘杰, 黎照, 杨渝南, 张子睿, 唐洪宇, 高进, 申剑, . 岩石裂隙可视化渗流装置可行性及试验研究[J]. 岩土力学, 2020, 41(12): 4127-4136.
[14] 王明玉, 刘庆哲, 曲辞晓, 李金柱, . 基于圆盘裂隙物理模型的岩体单一 裂隙渗流规律试验研究[J]. 岩土力学, 2020, 41(11): 3523-3530.
[15] 崔溦, 邹旭, 李正, 江志安, 谢武, . 分形岩石裂隙中渗流扩散运动的试验研究[J]. 岩土力学, 2020, 41(11): 3553-3562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[3] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[4] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[5] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[6] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[7] 杜佐龙,黄茂松,李 早. 基于地层损失比的隧道开挖对临近群桩影响的DCM方法[J]. , 2009, 30(10): 3043 -3047 .
[8] 吴振君,王水林,葛修润. 约束随机场下的边坡可靠度随机有限元分析方法[J]. , 2009, 30(10): 3086 -3092 .
[9] 颜天佑,李同春,赵兰浩,季薇薇. 三维边坡稳定分析的有限元弹塑性迭代解法[J]. , 2009, 30(10): 3102 -3108 .
[10] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .