岩土力学 ›› 2020, Vol. 41 ›› Issue (11): 3769-3776.doi: 10.16285/j.rsm.2020.0269

• 岩土工程研究 • 上一篇    下一篇

基于热量收支平衡原理的多年冻土区 热棒路基设计计算方法

蔡汉成1, 2,孟进宝1, 2,赵相卿1, 2,崔凯3,李广瑞3, 4   

  1. 1. 中铁西北科学研究院有限公司,甘肃 兰州 730000;2. 青海省冻土与环境工程重点实验室,青海 格尔木 816000; 3. 内蒙古交通设计研究院有限责任公司,内蒙古 呼和浩特 010011;4. 中南大学 地球科学与信息物理学院,湖南 长沙 410083
  • 收稿日期:2020-01-09 修回日期:2020-04-13 出版日期:2020-11-11 发布日期:2020-12-25
  • 作者简介:蔡汉成,男,1986年生,硕士,高级工程师,主要从事冻土工程方面的研究。
  • 基金资助:
    内蒙古自治区科技重大专项(No. zdzx2018041);中铁科研院科技开发计划(No. 2017-KJ005-Z005-XB);中国中铁股份公司重点课题(No. 2019-重点-54)。

Design method of the thermosyphon embankment in permafrost region based on principle of heat balance

CAI Han-cheng1, 2, MENG Jin-bao1, 2, ZHAO Xiang-qing1, 2, CUI Kai3, LI Guang-rui3, 4   

  1. 1. Northwest Research Institute Co., Ltd of China Railway Engineering Corporation, Lanzhou, Gansu 730000, China; 2. Qinghai Province Key Laboratory of Permafrost and Environmental Engineering, Golmud, Qinghai 816000, China; 3. Inner Mongolia Transportation Design and Research Institute Co., Ltd., Hohhot, Inner Mongolia 010011, China; 4. School of Geosciences and Info-physics, Central South University, Changsha, Hunan 410083, China
  • Received:2020-01-09 Revised:2020-04-13 Online:2020-11-11 Published:2020-12-25
  • Supported by:
    This work was supported by the Inner Mongolia Autonomous Region 2018 Major Science and Technology Project(zdzx2018041), the China Railway Academy Co.,Ltd. Science and Technology Research Project(2017-KJ005-Z005-XB) and the China Railway Group Co.,Ltd. Science and Technology Research Project(2019-key-54).

摘要: 热棒是多年冻土区对路基进行热防护的重要措施之一,但相关规范中没有给出热棒路基的设计计算方法,已建热棒路基的设计主要是借鉴以往的工程经验。通过现场监测与计算,分析了冻土路基的热量收支特征,发现冻土路基在暖季处于吸热状态,而在寒季处于放热状态,年内总体处于吸热状态。地基多年冻土融沉的本质原因是路基的吸热量大于放热量导致的热量正积累。基于此,从路基热量收支平衡的角度出发,提出了一种新的热棒路基设计计算方法,其基本原理为确保热棒年内放热量不小于路基的年净吸热量。对青藏高原多年冻土区的热棒路基进行了现场试验监测,结果表明,热棒路基的沉降量明显小于普通路基的沉降量,热棒路基提高了地基多年冻土的稳定性,控制住了路基沉降变形。提出的热棒路基设计计算方法理论明确,参数获取简便,具有较强的工程应用价值,可在多年冻土区热棒路基设计中推广使用。

关键词: 路基工程, 热棒路基, 热量平衡, 设计方法, 现场试验

Abstract: Thermosyphon is one of the important measures for thermal protection of the embankment in permafrost region. But the design method of the thermosyphon embankment is not provided in relevant standards. Therefore, the design of the existing embankments with thermosyphon mainly depends on the past engineering experience. Through field monitoring and theoretical calculation, the characteristics of heat exchange balance for the embankment in frozen soil region were analyzed. It was found that the embankment absorbs heat in warm season, but releases heat in cold season, and it was in the endothermic state for the whole year. The essential reason of the embankment thawing settlement is that the heat absorption is greater than heat release. A new design method of thermosyphon embankment was proposed based on the theory of heat balance. Its basic principle is to ensure the thermosyphon annual heat transmission capacity which is not less than the embankment net heat absorption. Taking the highway engineering in permafrost region of Qinghai-Tibet Plateau as an example, the design method proposed in this paper was verified by field test. The results show that the settlement of the thermosyphon embankment designed using the proposed method was significantly less than that of the ordinary ones. The thermosyphon embankment has improved the stability of the underlying permafrost and mitigated the settlement of the foundation permafrost. That verified the correctness and rationality of the method proposed in this paper. This method has clear theory, simple parameter acquisition and strong engineering application value, which can be widely used in design of the thermosyphon embankment in permafrost region.

Key words: embankment engineering, thermosyphon subgrade, heat balance, design method, field experiment

中图分类号: 

  • TU 445
[1] 王力, 李高, 陈勇, 谭建民, 王世梅, 郭飞, . 赣南地区人工切坡降雨致灾机制现场模型试验[J]. 岩土力学, 2021, 42(3): 846-854.
[2] 杨军, 孙晓立, 卞德存, 邵继喜, . 基于平行地震波法探测桩基缺陷的试验研究[J]. 岩土力学, 2021, 42(3): 874-881.
[3] 任连伟, 任军洋, 孔纲强, 刘汉龙, . 冷热循环下PHC能量桩热力响应 和承载性能现场试验[J]. 岩土力学, 2021, 42(2): 529-536.
[4] 高盟, 张致松, 王崇革, 田抒平, . 竖向激振力下WIB-Duxseal联合隔振试验研究[J]. 岩土力学, 2021, 42(2): 537-546.
[5] 季伟伟, 孔纲强, 刘汉龙, 杨庆, . 软塑黄土地区隧道仰拱热力响应特性现场试验[J]. 岩土力学, 2021, 42(2): 558-564.
[6] 张晓磊, 冯世进, 李义成, 王雷, . 路基高架过渡段高铁运行引起的地表 振动现场试验研究[J]. 岩土力学, 2020, 41(S1): 187-194.
[7] 李任融, 孔纲强, 杨庆, 孙广超. 流速对桩−筏基础中能量桩换热效率 与热力耦合特性影响研究[J]. 岩土力学, 2020, 41(S1): 264-270.
[8] 宁奕冰, 唐辉明, 张勃成, 申培武, 章广成, 夏丁, . 基于正交设计的岩石相似材料配比研究及 底摩擦物理模型试验应用[J]. 岩土力学, 2020, 41(6): 2009-2020.
[9] 江南, 黄林, 冯君, 张圣亮, 王铎, . 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009.
[10] 陈仁朋, 王朋飞, 刘鹏, 程威, 康馨, 杨微, . 路基煤矸石填料土-水特征曲线试验研究[J]. 岩土力学, 2020, 41(2): 372-378.
[11] 韩建文, 刘宝, 王飞, 杨明雨, 陶明安. 高速铁路硅藻土路基工程现场综合试验研究[J]. 岩土力学, 2020, 41(12): 4063-4072.
[12] 屈畅姿, 康凯, 魏丽敏, 郭坤, 何群, 王永和, . 高铁路-涵过渡段路基动力响应特性及 长期动力稳定性研究[J]. 岩土力学, 2020, 41(10): 3432-3242.
[13] 陆晨凯, 孔纲强, 孙广超, 陈斌, 殷高翔, . 桩−筏基础中能量桩热−力耦合特性现场试验[J]. 岩土力学, 2019, 40(9): 3569-3575.
[14] 冯君, 王洋, 吴红刚, 赖冰, 谢先当, . 玄武岩纤维复合材料土层锚杆抗拔性能 现场试验研究[J]. 岩土力学, 2019, 40(7): 2563-2573.
[15] 吴爽爽, 胡新丽, 龚辉, 周昌, 徐楚, 王强, 应春业, . 3种模式下钻孔灌注桩桩-土剪切特性 现场试验研究[J]. 岩土力学, 2019, 40(7): 2838-2846.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[3] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[4] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[5] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[6] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[7] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[8] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[9] 贾宇峰,迟世春,林 皋. 考虑颗粒破碎影响的粗粒土本构模型[J]. , 2009, 30(11): 3261 -3266 .
[10] 倪骁慧,朱珍德,赵 杰,李道伟,冯夏庭. 岩石破裂全程数字化细观损伤力学试验研究[J]. , 2009, 30(11): 3283 -3290 .