岩土力学 ›› 2021, Vol. 42 ›› Issue (1): 104-112.doi: 10.16285/j.rsm.2020.0442

• 基础理论与实验研究 • 上一篇    下一篇

石灰-红黏土互损行为与偏高岭土减损机制

谈云志1,占少虎1,胡焱1,曹玲1,邓永锋2,明华军1,沈克军3   

  1. 1. 三峡大学 特殊土资源化利用宜昌市重点实验室,湖北 宜昌 443002;2. 东南大学 岩土工程研究所,江苏 南京 211189; 3. 宜昌鸿乾环保建材有限公司,湖北 宜昌 443100
  • 收稿日期:2020-04-15 修回日期:2020-10-26 出版日期:2021-01-11 发布日期:2021-01-06
  • 作者简介:谈云志,男,1979年生,博士,教授,主要从事特殊土方面的教学与科研工作
  • 基金资助:
    国家自然科学基金项目(No. 51579137);湖北省优秀中青年科技创新团队计划项目(No. T201803)

Behavior of lime-laterite interaction and anti-erosion mechanism of Metakaolin

TAN Yun-zhi1, ZHAN Shao-hu1, HU Yan1, CAO Ling1, DENG Yong-feng2, MING Hua-jun1, SHEN Ke-jun3   

  1. 1. Yichang Key Laboratory of the Resources Utilization for Problematic Soils, China Three Gorges University, Yichang, Hubei 443002, China; 2. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 211189, China; 3. Yichang Hongqian Environmental Building Materials Co. Ltd., Yichang, Hubei 443100, China
  • Received:2020-04-15 Revised:2020-10-26 Online:2021-01-11 Published:2021-01-06
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51579137) and the Youth Innovation Team Project of Hubei Province (T201803).

摘要: 红黏土成团现象突出,导致石灰处治红黏土时难以拌和均匀;同时,红黏土呈弱酸性,石灰与黏土会发生互损作用,最终影响处治效果。首先,从水分子与黏土矿物的电荷分布特征角度,解释了红黏土呈弱酸性的原因;然后,通过酸、碱溶液浸泡石灰处治红黏土,模拟石灰?红黏土的互损行为;最后,提出应用偏高岭土抑制“石灰?红黏土”互损的方法。为此,选择两种团粒尺寸的红黏土,掺入不同比例的偏高岭土和石灰,并评价其无侧限抗压强度。结果表明,与仅用石灰处治的红黏土相比,掺入偏高岭土过多或过少都不利于其强度提高,掺量为5%效果最佳,验证了偏高岭土抑制“石灰?红黏土”互损行为的可行性。偏高岭土与石灰快速反应,不仅生成了以离子键结合的硅、铝酸胶结物,还生成了以共价键结合的网状胶结物,而且后者具有明显的抗酸侵蚀能力,从而解释了偏高岭土能够减少石灰?红黏土互损的内在原因。

关键词: 偏高岭土, 石灰, 团粒尺寸, 红黏土, 强度

Abstract: Laterite is prone to form as aggregate due to its high clay content, leading to a difficultly in uniformly mixing itwith lime. Meanwhile, is the weak acid property of laterite promotes the interaction between the lime and laterite, which shows a significant influence on the final treatment effects. In this paper, the causes of the weak acidity of laterite are firstly studied through the charges distribution characteristics of water molecules and clay minerals. Then, the interaction between lime and laterite is simulated through soaking the lime-treated laterite in the acid and alkaline solution respectively. Based on the results, the method to inhibit the lime-laterite interaction by metakaolin is proposed. Laterite with two groups size, mixed with different dose of metakaolin and lime are adopted to conduct the unconfined compressive strength tests. The results show that compared with the laterite treated with lime alone, neither excessive nor insufficient metakaolin has contribution to its strength improvement, and the best treatment effect can be obtained with the dose of 5.0% metakaolin, which verifies the feasibility of metakaolin to inhibit the lime-laterite interaction . Reactions between metakaolin and limecan form not only the silicon and aluminate cementation bonded by ionic bond but also the reticular cementation bonded by covalent bond. Since the latter has a significant ability toresist erosion by acid, the internal reason of lime-laterite interaction undermined by metakaolin is interpreted.

Key words: metakaolin, lime, aggregate size, laterite, strength

中图分类号: 

  • TU 411
[1] 晏青, 赵均海, 张常光. 基于统一强度理论的临坡加筋地基极限承载力新解[J]. 岩土力学, 2021, 42(6): 1587-1600.
[2] 陈昌富, 杜成, 朱世民, 何仕林, 张根宝, . 红黏土土层锚杆界面剪切应力松弛试验及其模型[J]. 岩土力学, 2021, 42(5): 1201-1209.
[3] 孙增春, 郭浩天, 刘汉龙, 吴焕然, 肖杨, . 基于扰动状态概念的饱和黏土热弹塑性本构模型[J]. 岩土力学, 2021, 42(5): 1325-1334.
[4] 平琦, 苏海鹏, 马冬冬, 张号, 张传亮, . 不同高温作用后石灰岩物理与动力特性试验研究[J]. 岩土力学, 2021, 42(4): 932-942.
[5] 余莉, 彭海旺, 李国伟, 张钰, 韩子豪, 祝瀚政. 花岗岩高温−水冷循环作用下的试验研究[J]. 岩土力学, 2021, 42(4): 1025-1035.
[6] 王家辉, 饶锡保, 江洎洧, 姚劲松, 熊诗湖, 卢一为, 李浩民, . 振冲碎石桩复合地基抗剪机制的模型试验研究[J]. 岩土力学, 2021, 42(4): 1095-1103.
[7] 杨爱武, 杨少朋, 郎瑞卿, 陈子荷, . 轻质固化盐渍土三维力学特性研究[J]. 岩土力学, 2021, 42(3): 593-600.
[8] 陈猛, 崔秀文, 颜鑫, 王浩, 王二磊. 岩石−钢纤维混凝土复合层抗压强度预测模型[J]. 岩土力学, 2021, 42(3): 638-646.
[9] 吴俊, 征西遥, 杨爱武, 李延波. 矿渣−粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655.
[10] 任三绍, 张永双, 徐能雄, 吴瑞安, 刘筱怡. 含砾滑带土复活启动强度研究[J]. 岩土力学, 2021, 42(3): 863-873.
[11] 吕亚茹, 王冲, 黄厚旭, 左殿军, . 珊瑚砂细观颗粒结构及破碎特性研究[J]. 岩土力学, 2021, 42(2): 352-360.
[12] 谈云志, 占少虎, 沈克军, 左清军, 明华军, . 处治红黏土团粒的表层硬化与粒间胶结效应[J]. 岩土力学, 2021, 42(2): 361-368.
[13] 孙壮壮, 马刚, 周伟, 王一涵, 陈远, 肖海斌. 颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J]. 岩土力学, 2021, 42(2): 430-438.
[14] 王本鑫, 金爱兵, 孙浩, 王树亮, . 基于DIC的含不同角度3D打印 粗糙交叉节理试样破裂机制研究[J]. 岩土力学, 2021, 42(2): 439-450.
[15] 卢锋, 仇文革, . 基于能量演化理论的多参数非等比例折减的 安全系数求解方法[J]. 岩土力学, 2021, 42(2): 547-557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[4] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[5] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[6] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[7] 卢 正,姚海林,骆行文,胡梦玲. 公路交通荷载作用下分层地基的三维动响应分析[J]. , 2009, 30(10): 2965 -2970 .
[8] 孙 勇. 滑坡面下双排抗滑结构的计算方法研究[J]. , 2009, 30(10): 2971 -2977 .
[9] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[10] 李 磊,朱 伟 ,林 城,大木宜章. 干湿循环条件下固化污泥的物理稳定性研究[J]. , 2009, 30(10): 3001 -3004 .