岩土力学 ›› 2021, Vol. 42 ›› Issue (1): 193-202.doi: 10.16285/j.rsm.2020.0664

• 基础理论与实验研究 • 上一篇    下一篇

重载铁路基床表层级配碎石渗透特性试验研究

杨志浩1, 2,岳祖润1, 2,冯怀平1, 2,叶朝良1, 2,周江涛2,介少龙2   

  1. 1. 石家庄铁道大学 省部共建交通工程结构力学行为与系统安全国家重点实验室,河北 石家庄 050043; 2. 石家庄铁道大学 土木工程学院,河北 石家庄 050043
  • 收稿日期:2020-05-21 修回日期:2020-09-22 出版日期:2021-01-11 发布日期:2021-01-07
  • 通讯作者: 岳祖润,男,1962年生,博士,教授,主要从事地基变形控制与特殊土路基等方面的研究工作。E-mail: yzr1898@qq.com E-mail:yangzhihao@stdu.edu.cn
  • 作者简介:杨志浩,男,1988年生,博士研究生,主要从事重载铁路路基病害整治及路基结构优化方面的研究。
  • 基金资助:
    河北省自然科学基金项目(No. E2019210137);中国铁路总公司科技研究开发计划项目(No. 2017G008-G,No. 2017G002-W,No. 2017G008-A)。

Experimental study of permeability properties of graded macadam in heavy haul railway subgrade bed surface layer

YANG Zhi-hao1, 2, YUE Zu-run1, 2, FENG Huai-ping1, 2, YE Chao-liang1, 2, ZHOU Jiang-tao2, JIE Shao-long2   

  1. 1. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 2. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China
  • Received:2020-05-21 Revised:2020-09-22 Online:2021-01-11 Published:2021-01-07
  • Supported by:
    This work was supported by the Natural Science Foundation of Hebei Province (E2019210137) and the Technology Research and Development of China Railway Corporation (2017G008-G, 2017G002-W, 2017G008-A).

摘要: 重载铁路基床表层级配碎石渗透系数的快速、精确测定,对工程施工质量及工期的保证具有重要意义。基于达西定律研制适用于级配碎石的大型常水头渗透试验装置,并利用该装置考虑边壁效应进行一系列渗透试验,探究试样孔隙比e、不均匀系数Cu及特征粒径参数对其渗透系数K20的影响程度及规律。结合试验数据,以太沙基模型为基础,建立同时考虑孔隙及级配特征参数的渗透系数改进计算模型,并通过试验验证其精确性。结果表明:级配碎石的K20与其e2、平均粒径平方d502呈线性关系,与Cu呈负指数关系;d50对K20的影响权重最大,Cu次之,e最小;提出的计算模型具有较高准确性,可为新建重载铁路基床表层施工中填料渗透系数的快速测定及运营路基基床的渗透稳定性评估提供参考。

关键词: 重载铁路基床, 级配碎石, 渗透系数, 特征参数, 计算模型

Abstract: Rapid and accurate measurement of permeability coefficient for the graded macadam used in heavy-haul railway subgrade bed surface layer is of great significance to guarantee the construction quality and period. First, a large-scale constant-head permeameter suitable for graded macadam was developed based on Darcy’s Law, and a series of penetration tests considering wall effects was carried out using the aforementioned device. These initial tests were conducted to explore the influence degree and properties of pore ratio e, unevenness coefficient Cu, and characteristic particle size parameters on the permeability coefficient K20 of a specimen. Besides, based on the Terzaghi model, an improved calculation model that took into account both pore and gradation characteristic parameters was established with reference to test data, and the accuracy of the model was verified through experiments. The results show that the graded macadam permeability coefficient K20 has a linear relationship with e2 and the square of mean particle size d502, and has a negative exponential relationship with Cu; d50 has the greatest influence weight on K20, followed by Cu, and e has the smallest influence. The proposed calculation model demonstrates a high degree of accuracy and can provide a reference for rapid determination of permeability coefficient for the fillers used in newly heavy haul railway subgrade bed surface layer under construction. Using this calculation model, the permeability stability of operating subgrade beds can be evaluated.

Key words: heavy haul railway subgrade bed, graded macadam, permeability coefficient, characteristic parameters, calculation model

中图分类号: 

  • TU 470
[1] 傅鹤林, 安鹏涛, 李凯, 成国文, 李鲒, 余小辉, . 围岩非均质性对隧道突涌水的影响分析[J]. 岩土力学, 2021, 42(6): 1519-1528.
[2] 王英, 张虎元, 童艳梅, 周光平, . 接缝密封材料对缓冲砌块屏障封闭性能的影响[J]. 岩土力学, 2021, 42(6): 1648-1658.
[3] 鞠远江, 胡明鉴, 秦坤坤, 宋博, 孙子晨, . 珊瑚礁岛钙质砂细颗粒渗透运移规律研究[J]. 岩土力学, 2021, 42(5): 1245-1253.
[4] 陈晓斌, 杨宁宇, 朱禹, 张俊麒, 乔世范, . 轮胎衍生骨料级配碎石混合料应力−应变关系 大型三轴试验研究[J]. 岩土力学, 2021, 42(4): 921-931.
[5] 张乐, 党发宁, 高俊, 丁九龙. 线性加载条件下考虑应力历史的饱和黏土一维非线性固结渗透试验研究[J]. 岩土力学, 2021, 42(4): 1078-1087.
[6] 江文豪, 詹良通. 考虑井阻效应及径向渗透系数变化下砂井 地基的大变形固结[J]. 岩土力学, 2021, 42(3): 755-766.
[7] 李瑛, 陈东, 刘兴旺, 谢锡荣, 童星, 张金红. 悬挂式止水帷幕深基坑减压降水的简化计算方法[J]. 岩土力学, 2021, 42(3): 826-832.
[8] 桂跃, 吴承坤, 赵振兴, 刘声钧, 刘锐, 张秋敏. 微生物分解有机质作用对泥炭土工程性质的影响[J]. 岩土力学, 2020, 41(S1): 147-155.
[9] 杨志浩, 岳祖润, 冯怀平, 叶朝良, 马德良, . 级配碎石填料大三轴试验及累积塑性应变预测模型[J]. 岩土力学, 2020, 41(9): 2993-3002.
[10] 陈晓斌, 喻昭晟, 光, 张家生, 董亮, . 重载铁路基床表层级配碎石填料组构 系数应用与分析[J]. 岩土力学, 2020, 41(9): 3031-3040.
[11] 徐毅青, 邓绍玉, 葛琦. 锚索预应力初期与长期损失的预测模型研究[J]. 岩土力学, 2020, 41(5): 1663-1669.
[12] 薛阳, 吴益平, 苗发盛, 李麟玮, 廖康, 张龙飞. 库水升降条件下考虑饱和渗透系数空间变异性的白水河滑坡渗流变形分析[J]. 岩土力学, 2020, 41(5): 1709-1720.
[13] 范日东, 杜延军, 刘松玉, 杨玉玲, . 无机盐溶液作用下砂−膨润土竖向隔离屏障 材料化学相容性试验研究[J]. 岩土力学, 2020, 41(3): 736-746.
[14] 盛建龙, 韩云飞, 叶祖洋, 程爱平, 黄诗冰, . 粗糙裂隙水、气两相流相对渗透系数模型与数值分析[J]. 岩土力学, 2020, 41(3): 1048-1055.
[15] 李红坡, 陈征, 冯健雪, 蒙宇涵, 梅国雄, . 双层地基水平排水砂垫层位置优化研究[J]. 岩土力学, 2020, 41(2): 437-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[3] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[4] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[5] 卢 正,姚海林,骆行文,胡梦玲. 公路交通荷载作用下分层地基的三维动响应分析[J]. , 2009, 30(10): 2965 -2970 .
[6] 李 磊,朱 伟 ,林 城,大木宜章. 干湿循环条件下固化污泥的物理稳定性研究[J]. , 2009, 30(10): 3001 -3004 .
[7] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[8] 郭军辉,程卫国,张 滨. 土工格栅低温下蠕变特性试验研究[J]. , 2009, 30(10): 3009 -3012 .
[9] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[10] 陈 松,徐光黎,陈国金,吴雪婷. 三峡库区黄土坡滑坡滑带工程地质特征研究[J]. , 2009, 30(10): 3048 -3052 .