岩土力学 ›› 2021, Vol. 42 ›› Issue (2): 352-360.doi: 10.16285/j.rsm.2020.0938

• 基础理论与实验研究 • 上一篇    下一篇

珊瑚砂细观颗粒结构及破碎特性研究

吕亚茹1,王冲1,黄厚旭2,左殿军3   

  1. 1. 河海大学 力学与材料学院,江苏 南京 210098;2. 安徽建筑大学 土木工程学院,安徽 合肥 230601; 3. 交通运输部天津水运工程科学研究所,天津 300456
  • 收稿日期:2020-07-03 修回日期:2020-11-10 出版日期:2021-02-10 发布日期:2021-02-09
  • 通讯作者: 左殿军,男,1983年生,硕士,高级工程师,主要从事粗粒土本构模型和数值模拟研究工作。E-mail:zdj647@163.com E-mail:yaru419828@163.com
  • 作者简介:吕亚茹,女,1987年生,博士,青年教授,主要从事海洋岩土方面的科学研究
  • 基金资助:
    国家自然科学基金(No. 51779264);江苏省自然科学基金面上项目(No. BK20171399);中央高校基本科研业务费(No. B200202119);安徽省自然基金(No. 2008085QE219);中央级公益性科研院所基本科研业务费项目(No. TKS20200403)。

Study on particle structure and crushing behaviors of coral sand

LÜ Ya-ru1, WANG Chong1, HUANG Hou-xu2, ZUO Dian-jun3   

  1. 1. College of Mechanics and Materials, Hohai University, Nanjing, Jiangsu 210098, China; 2. College of Civil Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China; 3. Tianjin Research Institute for Water Transport Engineering, Ministry of Transport of the People’s Republic of China, Tianjin 300456, China
  • Received:2020-07-03 Revised:2020-11-10 Online:2021-02-10 Published:2021-02-09
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51779264), the General Program of Natural Science Foundation of Jiangsu Province (BK20171399), the Fundamental Research Funds for the Central Universities (B200202119), the Natural Science Foundation of Anhui (2008085QE219) and the Basic Scientific Research Service Funds of Central Level Public Welfare Research Institutes (TKS20200403).

摘要: 珊瑚砂颗粒的物理力学特性决定着珊瑚砂的宏观力学机制,在涉及颗粒破碎的岩土工程问题中至关重要。通过扫描电镜和X-CT试验,研究了珊瑚砂颗粒的表观和内部结构特征,发现珊瑚砂颗粒多孔隙,保留生物骨骼成分的珊瑚砂颗粒孔隙率高达41%,而经过风化、沉积而成的珊瑚砂颗粒孔隙率小于20%。多数表面孔隙可与内部连通,使气体可以流通。珊瑚砂颗粒压缩破碎形态与孔隙率密切相关,孔隙率含量低的颗粒表现出与石英砂相似的形态,即颗粒逐级破碎。孔隙率含量高的颗粒往往表现出“骨架压缩”现象,骨架破碎伴随细小的碎屑产生,碎屑不脱离骨架直至压缩至粉末。通过统计分析,得到了珊瑚砂圆形、枝状和片状颗粒的弹性模量、屈服强度和破碎强度,明确了各种颗粒强度与粒径的相关性,为研究宏观珊瑚砂力学特性提供参数依据。进一步得到了屈服与破碎应力-应变的指数分布规律,为后续进一步探索颗粒破碎特性奠定基础。

关键词: 珊瑚砂, 孔隙率, 颗粒破碎, 破碎强度, 应力-应变

Abstract: The physical and mechanical properties of coral sand particles determine the macro mechanical behaviors of coral sand, which is closely related to several geotechnical engineering problems, especially those related to particle breakage. The apparent and internal structure characteristics of coral sand particles were studied by SEM and X-CT tests. It was found that the coral sand particles were porous. The porosity of coral sand particles with biological skeleton components was as high as 41%, while the porosity of coral sand particles formed by weathering and depositing was less than 20%. Most of the pores on the surface of the particles can be connected with the interior so that the gas can flow through the particles. The failure type of coral sand particles was closely related to the porosity. The coral sand particles with low porosity were broken into fragmentations step by step, similar to silica sand particles. The coral sand particles with high porosity were gradually compressed with the failure of skeleton. The failure of the skeleton was accompanied by the formation of fine detritus which did not detach from the skeleton until the particles were compressed into powder. The elastic modulus, yielding strength and crushing strength of circular, branched and flaky coral sand particles were determined by compression tests and statistical analysis. The correlations between particle strength and particle size was clarified, which provided parameter basis for studying the mechanical properties of coral sand. Furthermore, the stress-strain curves of yielding and crushing were exponentially distributed, which laid a foundation for further exploration of particle crushing characteristics in the future.

Key words: coral sand, porosity, particle crushing, crushing strength, stress-strain

中图分类号: 

  • TU 441
[1] 邓申缘, 姜清辉, 商开卫, 井向阳, 熊峰, . 高温对花岗岩微结构及渗透性演化机制影响分析[J]. 岩土力学, 2021, 42(6): 1601-1611.
[2] 沈扬, 冯照雁, 邓珏, 陈锴嘉, 许俊红, . 南海珊瑚砂地基承载力模型试验研究[J]. 岩土力学, 2021, 42(5): 1281-1290.
[3] 刘海峰, 郑坤, 朱长歧, 孟庆山, 吴文娟. 基于应力−应变曲线的礁灰岩脆性特征评价[J]. 岩土力学, 2021, 42(3): 673-680.
[4] 孙壮壮, 马刚, 周伟, 王一涵, 陈远, 肖海斌. 颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J]. 岩土力学, 2021, 42(2): 430-438.
[5] 孟敏强, 王磊, 蒋翔, 汪成贵, 刘汉龙, 肖杨, . 基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟[J]. 岩土力学, 2020, 41(9): 2953-2962.
[6] 贺文海, 王通. 二维饱和土体动态孔隙率及相关动力响应特性研究[J]. 岩土力学, 2020, 41(8): 2703-2711.
[7] 邓玮婷, 丁选明, 彭宇, . 珊瑚砂地基中膨胀混凝土桩竖向受压承载性能研究[J]. 岩土力学, 2020, 41(8): 2814-2820.
[8] 梁珂, 陈国兴, 杭天柱, 刘抗, 何杨, . 砂类土最大动剪切模量的新预测模型[J]. 岩土力学, 2020, 41(6): 1963-1970.
[9] 侯志强, 王宇, 刘冬桥, 李长洪, 刘昊. 三轴疲劳-卸围压条件下大理岩力学特性试验研究[J]. 岩土力学, 2020, 41(5): 1510-1520.
[10] 徐东升, 黄明, 黄佛光, 陈成. 不同级配珊瑚砂水泥胶结体的破坏行为分析[J]. 岩土力学, 2020, 41(5): 1531-1539.
[11] 褚福永, 朱俊高, 翁厚洋, 叶洋帆. 粗粒料级配缩尺后最大干密度试验研究[J]. 岩土力学, 2020, 41(5): 1599-1604.
[12] 王刚, 秦相杰, 江成浩, 张振宇. 温度作用下CT三维重建煤体微观 结构的渗流和变形模拟[J]. 岩土力学, 2020, 41(5): 1750-1760.
[13] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[14] 马维嘉, 陈国兴, 吴琪, . 复杂加载条件下珊瑚砂抗液化强度试验研究[J]. 岩土力学, 2020, 41(2): 535-542.
[15] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[3] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[4] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[5] 卢 正,姚海林,骆行文,胡梦玲. 公路交通荷载作用下分层地基的三维动响应分析[J]. , 2009, 30(10): 2965 -2970 .
[6] 李 磊,朱 伟 ,林 城,大木宜章. 干湿循环条件下固化污泥的物理稳定性研究[J]. , 2009, 30(10): 3001 -3004 .
[7] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[8] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[9] 陈 松,徐光黎,陈国金,吴雪婷. 三峡库区黄土坡滑坡滑带工程地质特征研究[J]. , 2009, 30(10): 3048 -3052 .
[10] 张建国,张强勇,杨文东,张 欣. 大岗山水电站坝区初始地应力场反演分析[J]. , 2009, 30(10): 3071 -3078 .