岩土力学 ›› 2021, Vol. 42 ›› Issue (5): 1355-1362.doi: 10.16285/j.rsm.2020.1267

• 基础理论与实验研究 • 上一篇    下一篇

堆积体滑带土非饱和-饱和渗透特性试验研究

李跃1, 2,徐卫亚1, 3,易魁4,谢伟超2,张强5,孟庆祥1, 3   

  1. 1. 河海大学 岩土工程研究所,江苏 南京 210098;2. 滑铁卢大学 土木与环境学院,加拿大 安大略省; 3. 河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210098;4. 华能澜沧江水电股份有限公司,云南 昆明 650214; 5. 中国水利水电科学研究院 岩土工程研究所,北京 100038
  • 收稿日期:2020-08-21 修回日期:2020-12-27 出版日期:2021-05-11 发布日期:2021-05-08
  • 通讯作者: 张强,男,1986年生,博士,高级工程师,主要从事复杂岩土介质多尺度灾变机制与数值模拟方面研究。E-mail: zhangq@iwhr.com E-mail:Yueh.Li@foxmail.com
  • 作者简介:李跃,男,1987年生,博士,主要从事复杂岩土工程灾害的防灾减灾研究
  • 基金资助:
    国家自然科学基金重点项目(No. 51939004);国家重点研发计划(No. 2017YFC1501100);国家自然科学基金(No. 11772118);华能集团公司重点科技项目(No. HNKJ18-H24)

Experimental study of unsaturated-saturated permeability characteristics of slip soil in landslide deposits

LI Yue1, 2, XU Wei-ya1, 3, YI Kui4, XIE Wei-chao2, ZHANG Qiang5, MENG Qing-xiang1, 3   

  1. 1. Research Institute of Geotechnical Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. Department of Civil and Environmental Engineering, University of Waterloo, Ontario, Canada; 3. Key Laboratory of Geomechanics and Embankment Engineering, Ministry of Education, Hohai University, Nanjing, Jiangsu 210098, China; 4. Huaneng Lancang River Hydropower Inc., Kunming, Yunnan 650206, China; 5. Research Institute of Geotechnical Engineering, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
  • Received:2020-08-21 Revised:2020-12-27 Online:2021-05-11 Published:2021-05-08
  • Supported by:
    This work was supported by the Key Program of National Natural Science Foundation of China (51939004), the National Key R & D Program of China (2017YFC1501100), the National Natural Science Foundation of China (11572344) and the Key Project of China Huaneng Group Science and Technology (HNKJ18-H24).

摘要: 我国西南地区水电工程近库坝区发育有大量的滑坡堆积体,这些堆积体在降雨、库水位升降等水动力条件下极易沿既有滑带产生变形和破坏。以澜沧江流域大华桥水电站大华滑坡为例,针对其滑带土开展了土-水特征曲线试验,分析了非饱和渗透过程的特性及演化规律,研究了不同围压和不同渗压条件下的饱和渗透特性。研究结果表明,采用VG模型可较好地描述大华滑带土的土-水特征曲线及其相对渗透系数的变化规律;通过饱和渗透试验分析发现,在相同条件下围压越大,滑带土的饱和渗透能力越弱,而渗压越大,饱和渗透能力越强,且滑带土饱和渗透表现出较强的非Darcy流特征,其渗透速度与水力坡降之间满足Forchheimer二项式关系,且当围压较低时,速度一次项对渗透的影响更显著。而随着围压增加,速度二次项逐步占据主导。

关键词: 堆积体滑带土, 非饱和-饱和渗透, 土-水特征曲线, 非Darcy渗流, 水动力型滑坡

Abstract: There are many landslide deposits in the reservoir and bank areas of hydropower projects in southwest China. These deposits are easy to deform and fail along the existing sliding zone under hydrodynamic conditions, such as rainfall and reservoir water fluctuation. The slip soil in Dahua landslide deposits which are located at the Dahuaqiao Hydropower Plant in the Lancang river basin of southwest China, was studied as an example. The experimental study was carried out to explore the soil-water characteristic curve (SWCC) of slip soil. The permeability characteristics and the evolution in the unsaturated seepage process were analyzed, and the saturated permeability characteristics under different confining pressures and seepage pressures were studied. The results indicated that the VG model could be used to describe the SWCC and the variation of relative permeability coefficient of Dahua slip soil. Through the saturated permeability test, it is found that under the same other conditions, the larger the confining pressure is, the weaker the saturated permeability of the slip soil is; while the larger the seepage pressure is, the stronger the saturated permeability is. Furthermore, the saturated permeability characteristics of the slip soil manifested a strong non-Darcy flow behavior, and the relationship between permeability velocity and hydraulic gradient satisfied the Forchheimer binomial model. When the confining pressure was low, the linear term coefficient of velocity had a more significant effect on the permeability, whereas the quadratic term coefficient of velocity gradually dominated in the seepage process with the increase of confining pressure.

Key words: slip soil in landslide deposits, unsaturated-saturated permeability, soil-water characteristic curve (SWCC), non-Darcy flow, hydrodynamic- induced landslide

中图分类号: 

  • TU 411
[1] 谌文武, 贾全全, 童艳梅. 莫高窟壁画地仗土-水特征曲线的测定与拟合[J]. 岩土力学, 2020, 41(5): 1483-1491.
[2] 陈仁朋, 王朋飞, 刘鹏, 程威, 康馨, 杨微, . 路基煤矸石填料土-水特征曲线试验研究[J]. 岩土力学, 2020, 41(2): 372-378.
[3] 陶高梁, 吴小康, 甘世朝, 肖衡林, 马 强, 罗晨晨, . 不同初始孔隙比下非饱和黏土渗透性 试验研究及模型预测[J]. 岩土力学, 2019, 40(5): 1761-1770.
[4] 郑国锋, 郭晓霞, 邵龙潭, . 基于状态曲面的非饱和土强度准则及其验证[J]. 岩土力学, 2019, 40(4): 1441-1448.
[5] 李明玉, 孙文静. 黏土掺入生物炭后的持水特性及其影响机制[J]. 岩土力学, 2019, 40(12): 4722-4730.
[6] 陶高梁,李 进,庄心善,肖衡林,崔惜琳,徐维生. 利用土中水分蒸发特性和微观孔隙分布规律确定SWCC残余含水率[J]. , 2018, 39(4): 1256-1262.
[7] 毕 骏,谌文武,戴鹏飞,林高潮, . 校正系数对不同形式的Van Genuchten方程各拟合参数的影响[J]. , 2018, 39(4): 1302-1310.
[8] 陶高梁,柏 亮,袁 波,甘世朝. 土-水特征曲线与核磁共振曲线的关系[J]. , 2018, 39(3): 943-948.
[9] 黎澄生,孔令伟,柏 巍,安 然,李甜果, . 土-水特征曲线滞后阻塞模型[J]. , 2018, 39(2): 598-604.
[10] 刘星志,刘小文,陈 铭,谷明晗. 基于3个不等粒径颗粒接触模型的土-水特征曲线[J]. , 2018, 39(2): 651-656.
[11] 方瑾瑾,冯以鑫,邵生俊,. 真三轴条件下原状Q3黄土的土-水特征[J]. , 2017, 38(9): 2597-2604.
[12] 毕 骏,谌文武, . 参数m的形式和最大基质吸力点对Van Genuchten方程各参数的影响[J]. , 2017, 38(12): 3604-3612.
[13] 黄启迪,赵成刚,蔡国庆,. 基于热力学并考虑体变及滞回效应的土-水特征曲线模型[J]. , 2016, 37(7): 1857-1867.
[14] 曹春山 ,吴树仁 ,潘 懋,梁昌玉,. 工程切坡诱发黄土滑坡成因机制研究[J]. , 2016, 37(4): 1049-1060.
[15] 李顺群,贾红晶,王杏杏,桂 超,. 轴平移技术在基质吸力测控中的局限性和误差分析[J]. , 2016, 37(11): 3089-3095.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏 丽,柴寿喜,蔡宏洲,王晓燕,李 敏,石 茜. 麦秸秆加筋材料抗拉性能的实验研究[J]. , 2010, 31(1): 128 -132 .
[2] 黄庆享,张 沛,董爱菊. 浅埋煤层地表厚砂土层“拱梁”结构模型研究[J]. , 2009, 30(9): 2722 -2726 .
[3] 荆志东,刘俊新. 红层泥岩半刚性基床结构动态变形试验研究[J]. , 2010, 31(7): 2116 -2121 .
[4] 刘争宏,廖燕宏,张玉守. 罗安达砂物理力学性质初探[J]. , 2010, 31(S1): 121 -126 .
[5] 雷金波,陈从新. 基于双曲线模型的带帽刚性桩复合地基荷载传递机制研究[J]. , 2010, 31(11): 3385 -3391 .
[6] 王登科,刘 建,尹光志,韦立德. 突出危险煤渗透性变化的影响因素探讨[J]. , 2010, 31(11): 3469 -3474 .
[7] 樊恒辉,高建恩,吴普特,娄宗科. 水泥基土壤固化剂固化土的物理化学作用[J]. , 2010, 31(12): 3741 -3745 .
[8] 张成平,张顶立,骆建军,王梦恕,吴介普. 地铁车站下穿既有线隧道施工中的远程监测系统[J]. , 2009, 30(6): 1861 -1866 .
[9] 王 军,曹 平,李江腾,刘业科. 降雨入渗对流变介质隧道边坡稳定性的分析[J]. , 2009, 30(7): 2158 -2162 .
[10] 张 渊,万志军,康建荣3,赵阳升. 温度、三轴应力条件下砂岩渗透率阶段特征分析[J]. , 2011, 32(3): 677 -683 .