岩土力学 ›› 2021, Vol. 42 ›› Issue (3): 611-619.doi: 10.16285/j.rsm.2020.1296

• 基础理论与实验研究 • 上一篇    下一篇

饱和砂土中裙式吸力基础水平循环特性和 累积转角变化规律

李大勇1,张景睿1,张雨坤2,高玉峰3,刘俊伟4   

  1. 1. 福州大学 土木工程学院,福建 福州 350108;2. 山东科技大学 山东省土木工程防灾减灾重点试验室,山东 青岛 266590; 3. 河海大学 土木交通学院,江苏 南京 210098;4. 青岛理工大学 土木工程学院,山东 青岛 266033
  • 收稿日期:2020-08-27 修回日期:2020-12-31 出版日期:2021-03-11 发布日期:2021-03-15
  • 通讯作者: 张雨坤,男,1987年生,博士,讲师,主要从事海洋岩土工程方面研究。E-mail: philc007@163.com E-mail:ldy@fzu.edu.cn
  • 作者简介:李大勇,男,1971年生,博士,教授,主要从事海洋岩土工程等方面的理论及试验研究。
  • 基金资助:
    国家自然科学基金资助项目(No.51879044,No.51808325,No.51639002);山东省高校科研计划项目(No.J18KA184);山东科技大学科研创新团队资助项目(No.2015TDJH104)。

Bearing behavior and accumulated rotation of modified suction caisson (MSC) in saturated sand under cyclic loading

LI Da-yong1, 2, ZHANG Jing-rui1, ZHANG Yu-kun2, GAO Yu-feng3, LIU Jun-wei4   

  1. 1. College of Civil Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; 2. Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao, Shandong 266590, China; 3. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 4. School of Civil Engineering, Qingdao University of Technology, Qingdao, Shandong 266033, China
  • Received:2020-08-27 Revised:2020-12-31 Online:2021-03-11 Published:2021-03-15
  • Supported by:

    This work was supported by the Natural Science Foundation of China(51879044,51808325,51639002), Shandong Province Higher Educational Science and Technology Program(J18KA184) and SDUST Research Fund(2015TDJH104).

摘要: 裙式吸力基础是一种新型海上风电工程吸力基础形式。采用模型试验研究水平循环荷载作用下,传统和裙式吸力基础的累积转角变化规律和影响因素,循环加载方式包含单向循环加载和变幅循环加载。试验结果表明:传统和裙式吸力基础循环累积转角主要发生在前200次循环,循环累积转角随循环荷载幅值和循环次数增加逐渐增大,累积转角增长速率随循环次数增加逐渐减小。基础累积转角与循环次数之间的关系可用幂函数进行表达。采用Leblanc方法和Miner准则,对长期变幅循环加载下基础累积转角转化为等幅循环荷载进行分析,预测了基础累积转角,发现循环荷载的顺序和循环荷载幅值对基础累积转角有一定的影响。荷载幅值逐级增大条件下,预测的基础累积转角略高于实测值。另外,研究了循环加载过程对基础水平极限承载力的影响,基础水平承载力较循环加载前有一定提高。研究成果能为海上风电吸力基础的设计提供依据。

关键词: 裙式吸力基础, 循环荷载, 荷载幅值, 循环次序, 累积转角

Abstract: Skirted suction caisson is a new type of suction foundation for offshore wind power engineering. Model tests were carried out to investigate the variation of cumulative rotation angle and its influencing factors of the regular suction caisson (RSC) and skirted suction caisson (SSC) under horizontal cyclic loading. The cyclic loading mode includes one-way cyclic loading and variable-amplitude cyclic loading. The experimental results showed that the cumulative rotation angle of the RSC and SSC under horizontal cyclic loading mainly occurs within the first 200 loading cycles. The cumulative rotation angle was found to increase with the increase of cyclic loading amplitude and the number of loading cycles. However, the increasing rate of cumulative rotation angle decreases with the increase of loading cycle number. The relationship between the cumulative rotation angle and the number of loading cycles can be well fitted by a power function. By using Leblanc method and Miner’s rule, the cumulative rotation angle of the suction caisson foundation under long-term variable-amplitude cyclic loading was transformed into that under constant amplitude cyclic loading and then can be estimated. It was found that when the loading amplitude increases step by step, the predicted cumulative rotation angle of the RSC and SSC obtained by using the Leblanc method and Miner’s law is slightly higher than the measured model test results, indicating that the sequence and amplitude of cyclic loading have a certain influence on the cumulative rotation angle of the suction caisson foundation. In addition, the influence of cyclic loading on the ultimate bearing capacity of suction caisson foundation was studied and it was found that the ultimate bearing capacities of the RSC and SSC after cyclic loading are higher than those before cyclic loading. The research results can provide a basis for the design of the suction caisson foundation of offshore wind power.

Key words: skirted suction caisson (SSC), cyclic loading, loading amplitude, cyclic loading sequence, cumulative rotation angle

中图分类号: 

  • P751
[1] 饶佩森, 李丹, 孟庆山, 王新志, 付金鑫, 雷学文, . 循环荷载作用下钙质砂地基土压力分布特征研究[J]. 岩土力学, 2021, 42(6): 1579-1586.
[2] 李亚峰, 聂如松, 李元军, 冷伍明, 阮波, . 间歇性循环荷载下路基细粒土填料永久 变形特性及预测模型[J]. 岩土力学, 2021, 42(4): 1065-1077.
[3] 丁楚, 余文瑞, 史江伟, 张宇亭, 陈永辉, . 水平循环荷载下桩基变形特性的离心模型试验研究[J]. 岩土力学, 2020, 41(8): 2659-2664.
[4] 张升, 高峰, 陈琪磊, 盛岱超, . 砂-粉土混合料在列车荷载作用下 细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598.
[5] 李潇旋, 李涛, 李舰, 张涛. 循环荷载下非饱和结构性黏土的弹塑性双面模型[J]. 岩土力学, 2020, 41(4): 1153-1160.
[6] 李宗泽, 姜德义, 范金洋, 陈 结, 刘 伟, 吴 斐, 杜 超, 康燕飞. 盐岩三轴间隔疲劳特性试验研究[J]. 岩土力学, 2020, 41(4): 1305-1312.
[7] 毕宗琦, 宫全美, 周顺华, 程茜, . 循环荷载下竖向土拱演化规律试验研究[J]. 岩土力学, 2020, 41(3): 886-894.
[8] 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560.
[9] 陈佳莹, 滕竞成, 尹振宇, . 黏土中桶式基础的宏单元模拟[J]. 岩土力学, 2020, 41(11): 3823-3830.
[10] 庄心善, 赵汉文, 陶高梁, 王俊翔, 黄勇杰. 循环荷载下弱膨胀土累积变形与动强度 特性试验研究[J]. 岩土力学, 2020, 41(10): 3192-3200.
[11] 唐晓武, 柳江南, 杨晓秋, 俞悦. 开孔管桩动孔压消散特性的理论研究[J]. 岩土力学, 2019, 40(9): 3335-3343.
[12] 杨小彬, 程虹铭, 吕嘉琦, 侯鑫, 聂朝刚, . 三轴循环荷载下砂岩损伤耗能比演化特征研究[J]. 岩土力学, 2019, 40(10): 3751-3757.
[13] 刘 斌, 许宏发, 董 璐, 马语卿, 李可良, . 岩盐循环荷载下基于DS黏壶的非线性流变模型研究[J]. 岩土力学, 2018, 39(S2): 107-114.
[14] 时 刚,刘忠玉,李永辉. 循环荷载作用下考虑非达西渗流的软黏土一维流变固结分析[J]. , 2018, 39(S1): 521-528.
[15] 程星磊,王建华,王哲学,. 软黏土中吸力锚循环失稳过程的模型试验[J]. , 2018, 39(9): 3285-3293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 刚,李术才,王明斌. 渗透压力作用下加锚裂隙岩体围岩稳定性研究[J]. , 2009, 30(9): 2843 -2849 .
[2] 刘玉成,曹树刚,刘延保. 可描述地表沉陷动态过程的时间函数模型探讨[J]. , 2010, 31(3): 925 -931 .
[3] 杨建民,郑 刚. 基坑降水中渗流破坏归类及抗突涌验算公式评价[J]. , 2009, 30(1): 261 -264 .
[4] 周 华,王国进,傅少君,邹丽春,陈胜宏. 小湾拱坝坝基开挖卸荷松弛效应的有限元分析[J]. , 2009, 30(4): 1175 -1180 .
[5] 叶 飞,朱合华,何 川. 盾构隧道壁后注浆扩散模式及对管片的压力分析[J]. , 2009, 30(5): 1307 -1312 .
[6] 罗 强 ,王忠涛 ,栾茂田 ,杨蕴明 ,陈培震. 非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J]. , 2011, 32(S1): 732 -0737 .
[7] 王云岗 ,章 光 ,胡 琦. 斜桩基础受力特性研究[J]. , 2011, 32(7): 2184 -2190 .
[8] 龚维明,黄 挺,戴国亮. 海上风电机高桩基础关键参数试验研究[J]. , 2011, 32(S2): 115 -121 .
[9] 张春阳,曹 平,范 祥,林 杭,万琳辉. 高黏性铝土矿放矿流动性试验与微观力学研究[J]. , 2012, 33(6): 1653 -1659 .
[10] 周爱兆 ,卢廷浩 ,姜朋明 . 基于广义位势理论的接触面本构模型一般表述[J]. , 2012, 33(9): 2656 -2662 .