岩土力学 ›› 2021, Vol. 42 ›› Issue (6): 1648-1658.doi: 10.16285/j.rsm.2020.1805

• 基础理论与实验研究 • 上一篇    下一篇

接缝密封材料对缓冲砌块屏障封闭性能的影响

王英1, 2,张虎元1,童艳梅1,周光平1   

  1. 1. 兰州大学 土木工程与力学学院,甘肃 兰州 730000;2. 兰州理工大学 土木工程学院,甘肃 兰州 730050
  • 收稿日期:2020-12-03 修回日期:2021-03-10 出版日期:2021-06-11 发布日期:2021-06-15
  • 通讯作者: 张虎元,男,1963年生,博士,教授,博士生导师,主要从事与废弃物处置有关的环境岩土工程方面的研究工作。 E-mail: zhanghuyuan@lzu.edu.cn E-mail: ywang16@lzu.edu.cn
  • 作者简介:王英,女,1986年生,博士研究生,主要从事岩土工程方面的研究工作
  • 基金资助:
    国家自然科学基金(No.41972265)。

Influence of joint sealing material on the sealing performance of the buffer block barrier

WANG Ying1, 2, ZHANG Hu-yuan1, TONG Yan-mei1, ZHOU Guang-ping1   

  1. 1. School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, China; 2. School of Civil Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
  • Received:2020-12-03 Revised:2021-03-10 Online:2021-06-11 Published:2021-06-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41972265).

摘要: 室内制备模拟压实砌块,分别采用膨润土粉末、膨润土泥浆以及微粒膨润土(高密度膨润土颗粒与粉末的混合物)对砌块接缝进行密封,通过室内模拟渗透试验对砌块的膨胀、渗透性能进行研究,并借助X-CT扫描试验、热传导试验以及微观结构分析对砌块接缝的密封程度进行评价。试验结果表明:随着水化时长的增加,砌块核心区膨润土向接缝区孔隙侵入,接缝区膨胀力快速发展,导致砌块轴向膨胀应力的发展速度减缓,产生滞后现象;接缝密封材料类型对砌块体系的水化进程影响显著,膨胀应力发展速率存在差异;接缝的愈合程度与接缝充填材料的初始干密度呈正相关。CT扫描图像表明:水化结束后,密封接缝与砌块已基本“焊接”在一起,而未进行密封的砌块之间仍然存在间隙,并未完全封闭。相较于完整试样,密封接缝区土样的集合体间孔隙尺寸分布范围扩大(3~30 μm),泥浆密封试样接缝区土样结构疏松,出现100~500 μm的大孔隙,而干缝试样的接缝区则存在多条体积较大的裂隙状二维孔隙。密封可以显著提高砌块体系的各向膨胀能力,改善愈合砌块体系的均质性,密封后的砌块体系抗渗性能以及热传导性能与完整样接近,接缝的不利影响弱化。综合来看,采用微粒膨润土对砌块接缝进行密封,接缝的愈合度最高,砌块的各项工程性能最佳,其次为采用膨润土粉末以及膨润土泥浆进行密封的试样,未进行密封处理的干缝试样愈合效果最差。

关键词: 高放废物, 膨润土砌块, 接缝, 密封材料, 膨胀力, 渗透系数

Abstract: An indoor permeability test was conducted to study the sealing performance of joints between the compacted blocks which were backfilled with bentonite powder (P), bentonite particle-powder mixture (P/P) and bentonite slurry (S), respectively. The swelling stress and hydraulic conductivity were monitored during the permeability test. After the test, the homogenization of blocks and sealing degree of joints were evaluated according to the X-CT scanning test, thermal conductivity test and microstructure test. The results show that: with the increase of hydration time, the bentonite in the core area of the block intrudes into the pores of the joint, and the increase rate of swelling stress in the joint zone is higher than that in the axial direction of the block, which leads to the slowing down of the development speed of the axial swelling stress of the block and produces hysteresis. The joint sealing materials have significant influence on the hydration process of the block system, resulting different swelling stress development rates. The sealing degree of the joint is positively correlated with the initial dry density of the joint filling material. The X-CT scanning images show that the sealing joint and the block have been "welded" together after hydration. By contrast, there is still a gap between the blocks with a blank joint, showing a lower sealing degree. The MIP and SEM tests demonstrate that the pore size distribution of inter-aggregates in the joint area lies in the proportion between 3 μm and 30 μm, and a certain number of large pores with a diameter between 100 μm and 500 μm were observed in the joints sealed with bentonite slurry. Some fissure-like 2-dimensional pores appeared in the blank joint according to the SEM picture. Generally, sealing can significantly improve the expansion ability and homogeneity of the block system, and the impermeability and thermal conductivity of the healing block system are close to that of the intact sample. Joint backfilled with bentonite particle-powder mixture shows a better sealing performance, followed by the joint sealed with bentonite powder and bentonite slurry, and the sealing effect of joint without backfilling is the worst.

Key words: high-level radioactive waste, bentonite block, joint, sealing materials, swelling pressure, permeability

中图分类号: 

  • TU411
[1] 潘振辉, 肖涛, 李萍, . 压实度与制样含水率对压实黄土微结 构及水力特性的影响[J]. 岩土力学, 2022, 43(S1): 357-366.
[2] 张虎元, 王赵明, 朱江鸿, 周光平, . 混合型缓冲材料砌块渗透性及其各向异性研究[J]. 岩土力学, 2022, 43(3): 573-581.
[3] 王海曼, 倪万魁. 不同干密度压实黄土的饱和/非饱和渗透 系数预测模型[J]. 岩土力学, 2022, 43(3): 729-736.
[4] 周实际, 杜延军, 倪浩, 孙慧洋, 李江山, 杨玉玲, . 压实度对铁盐稳定化砷、锑污染土特性 的影响及机制研究[J]. 岩土力学, 2022, 43(2): 432-442.
[5] 魏天宇, 王旭宏, 吕涛, 胡大伟, 周辉, 洪雯. 湿化膨胀与掺砂率对混合型缓冲材料 THM耦合过程的影响分析[J]. 岩土力学, 2022, 43(2): 549-562.
[6] 詹良通, 丁兆华, 谢世平, 李育超, 何顺辉, . 竖向阻隔墙中土工复合膨润土防水毯搭接 区渗透系数测试与分析[J]. 岩土力学, 2021, 42(9): 2387-2394.
[7] 刘丽, 吴羊, 李旭, 赵煜鑫, . 压实度对宽级配土水力特性的影响研究[J]. 岩土力学, 2021, 42(9): 2545-2555.
[8] 刘俊新, 唐伟, 李军润, 张建新, 郭招群, 陈龙, 刘育田, . 高温及碱性条件对高庙子钠基膨润土膨胀力的影响[J]. 岩土力学, 2021, 42(8): 2160-2172.
[9] 傅鹤林, 安鹏涛, 李凯, 成国文, 李鲒, 余小辉, . 围岩非均质性对隧道突涌水的影响分析[J]. 岩土力学, 2021, 42(6): 1519-1528.
[10] 鞠远江, 胡明鉴, 秦坤坤, 宋博, 孙子晨, . 珊瑚礁岛钙质砂细颗粒渗透运移规律研究[J]. 岩土力学, 2021, 42(5): 1245-1253.
[11] 张乐, 党发宁, 高俊, 丁九龙. 线性加载条件下考虑应力历史的饱和黏土一维非线性固结渗透试验研究[J]. 岩土力学, 2021, 42(4): 1078-1087.
[12] 江文豪, 詹良通. 考虑井阻效应及径向渗透系数变化下砂井 地基的大变形固结[J]. 岩土力学, 2021, 42(3): 755-766.
[13] 李瑛, 陈东, 刘兴旺, 谢锡荣, 童星, 张金红. 悬挂式止水帷幕深基坑减压降水的简化计算方法[J]. 岩土力学, 2021, 42(3): 826-832.
[14] 张虎元, 丁志南, 谭煜, 朱江鸿, 曹志伟, . 压实膨润土-砂混合物最佳养护湿度研究[J]. 岩土力学, 2021, 42(11): 2925-2933.
[15] 郑维翰, 李涛, 冯硕, 高玉峰, 刘月妙, . 高压实膨润土砌块接缝组合 热−水−力耦合效应试验装置研制及应用[J]. 岩土力学, 2021, 42(10): 2908-2918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张宜虎,周火明,邬爱清. 结构面网络模拟结果后处理研究[J]. , 2009, 30(9): 2855 -2861 .
[2] 杨 光,孙 逊,于玉贞,张丙印. 不同应力路径下粗粒料力学特性试验研究[J]. , 2010, 31(4): 1118 -1122 .
[3] 闻世强,陈育民,丁选明,左威龙. 路堤下浆固碎石桩复合地基现场试验研究[J]. , 2010, 31(5): 1559 -1563 .
[4] 张常光,张庆贺,赵均海. 非饱和土抗剪强度及土压力统一解[J]. , 2010, 31(6): 1871 -1876 .
[5] 杨天鸿,陈仕阔,朱万成,刘洪磊,霍中刚,姜文忠. 煤层瓦斯卸压抽放动态过程的气-固耦合模型研究[J]. , 2010, 31(7): 2247 -2252 .
[6] 胡秀宏,伍法权. 岩体结构面间距的双参数负指数分布研究[J]. , 2009, 30(8): 2353 -2358 .
[7] 李卫超,熊巨华,杨 敏. 分层土中水泥土围护结构抗倾覆验算方法的改进[J]. , 2011, 32(8): 2435 -2440 .
[8] 张桂民 ,李银平 ,施锡林 ,杨春和 ,王李娟. 一种交互层状岩体模型材料制备方法及初步试验研究[J]. , 2011, 32(S2): 284 -289 .
[9] 王 伟 李小春 李 强 石 露 王 颖 白 冰. 小尺度原位瞬态压力脉冲渗透性测试系统及试验研究[J]. , 2011, 32(10): 3185 -3189 .
[10] 胡 存,刘海笑,黄 维. 考虑循环载荷下饱和黏土软化的损伤边界面模型研究[J]. , 2012, 33(2): 459 -466 .