岩土力学 ›› 2021, Vol. 42 ›› Issue (9): 2507-2517.doi: 10.16285/j.rsm.2020.1962

• 基础理论与实验研究 • 上一篇    下一篇

含气土地基热水气力耦合时变行为分析

黄家晟1, 2,王路君1, 2,刘燕晶1, 2,王心博1, 2,朱斌1, 2   

  1. 1. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058;2. 浙江大学 超重力研究中心,浙江 杭州 310058
  • 收稿日期:2020-12-30 修回日期:2021-05-31 出版日期:2021-09-10 发布日期:2021-08-30
  • 通讯作者: 王路君,男,1985年生,博士,副教授,主要从事海洋岩土工程和能源岩土工程方面的教学与研究工作。E-mail: lujunwang@zju.edu.cn E-mail:zgzjshzsgsqhjs@126.com
  • 作者简介:黄家晟,男,1996年生,硕士研究生,主要从事海洋岩土工程多场耦合作用研究。
  • 基金资助:
    浙江省自然科学基金(No.LY21E080026,No.LCD19E090001);国家自然科学基金项目(No.52078458,No.51988101,No.51708494)

Time-dependent behaviour of thermal-hydro-mechanical coupling of gassy soils

HUANG Jia-sheng1, 2, WANG Lu-jun1, 2, LIU Yan-jing1, 2, WANG Xin-bo1, 2, ZHU Bin1, 2   

  1. 1. Key Laboratory of Soft Soils and Geoenvironmental Engineering of the Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2020-12-30 Revised:2021-05-31 Online:2021-09-10 Published:2021-08-30
  • Supported by:
    This work was supported by Zhejiang Provincial Natural Science Foundation of China(LY21E080026, LCD19E090001) and the National Natural Science Foundation of China(52078458, 51988101, 51708494).

摘要: 含气土广泛存在于我国长三角、珠三角等滨海地区,气体通常在孔隙内以离散封闭气相的形式赋存。封闭气相对温度和压力变化敏感,导致土体压缩性、渗透性等改变。针对封闭气相热膨胀和土骨架蠕变特性对滨海含气软土固结过程的影响,基于精细积分法(precise integration method,简称PIM)对含气地基热水气力耦合时变行为开展研究。在控制方程中引入考虑温度和压力影响的气相体积变化因子反映封闭气相热膨胀特性,采用分数阶Merchant流变模型描述骨架的蠕变过程,基于稳定性好和计算精度高的PIM并结合积分变换获得考虑蠕变效应的含气土多场多相耦合问题的解。对比所得解答与饱和土热水力耦合问题解析解和固结问题有限元结果,验证其有效性。针对不同饱和度、不同黏滞系数的含气地基,探讨了气相膨胀、骨架蠕变效应对地基时变行为的影响。研究发现含气地基的黏滞系数对热固结过程影响显著,地基蠕变效应对位移的影响大于孔压,当黏滞系数大于1×1012 MPa·s时孔压与弹性地基相近,而变形过程被大幅延缓;地基中封闭气相膨胀会显著提高孔压峰值和位移幅值,对埋地高温管线等产生不利影响;对于Gibson地基,采用平均剪切模量计算孔压往往导致不可忽略的偏差,预测表面位移时偏差一般小于5%。

关键词: 含气土, 黏弹性, 热水气力耦合, 时变行为, 精细积分法

Abstract: Gassy soils are widely distributed in offshore sediments around Yangtze River and Pearl River in China. The pore gas usually exists in the form of discrete bubbles and is sensitive to the variation of the temperature and the pressure, which in turn leads to the changes of soil properties such as compressibility and permeability. Thus, to investigate the influence of thermal expansion of occluded gas phase and creep deformation of soil structures on the consolidation process of gassy soil in the offshore region, a study of thermos-hydro-mechanical coupling (THM) behavior of gassy soil is conducted based on the viscoelastic model. In the governing equations, the change of gas phase volume subjected to thermal and mechanical loadings is introduced to take the thermal expansion into consideration. The fractional derivative Merchant model is also adopted to describe the process of rock creep. In addition, these problems are solved by precise integration method (PIM), which proves to be efficient and several orders more precise than conventional numerical methods, combining with integral transform. For verification, the results obtained by this newly proposed method are compared with the analytical solution for THM problems of saturated soils and numerical prediction by FEM for consolidation problems. Typical examples with different saturations and viscosity coefficients are performed to investigate the effects of viscoelasticity and thermal expansion of gas phase on the time-dependent behavior of gassy soils. It is found that the viscosity has a significant impact on the thermal consolidation process. The creep characteristic shows a greater influence on deformation than the excess pore pressure. When the viscosity coefficient is greater than 1×1012 MPa·s, the excess pore pressure is similar to that of elastic soil foundation, and meantime the deformation process is obviously delayed. The occluded gas phase increases the peak values of excess pore pressure and surface deformation, which may reduce the stability of buried pipelines with high temperature. For Gibson soils, using the means of shear modulus to predict the excess pore pressure may result in non-ignorable deviations but the predicted surface deformation is with a deviation of less than 5%.

Key words: gassy soils, viscoelasticity, thermo-hydro-mechanical coupling, time-dependent behaviour, precise integration method

中图分类号: 

  • TU411
[1] 卢一为, 丁选明, 刘汉龙, 郑长杰, . 均匀黏弹性地基中X形桩纵向振动 响应简化解析方法[J]. 岩土力学, 2021, 42(9): 2472-2479.
[2] 魏匡民, 陈生水, 马洪玉, 李国英, 米占宽, . 黏弹性方法用于面板堆石坝动力分析时必要的改进[J]. 岩土力学, 2021, 42(12): 3475-3484.
[3] 叶梓, 艾智勇, . 变荷载下层状非饱和土地基全耦合固结特性研究[J]. 岩土力学, 2021, 42(1): 135-142.
[4] 徐进, 王少伟, 杨伟涛. 水位变化下可压缩土层的黏弹性耦合变形分析[J]. 岩土力学, 2020, 41(3): 1065-1073.
[5] 李德建, 刘校麟, 韩超, . 基于等效黏弹性的变阶分数阶岩石损伤蠕变模型[J]. 岩土力学, 2020, 41(12): 3831-3839.
[6] 赵密, 欧阳文龙, 黄景琦, 杜修力, 赵旭, . P波作用下跨断层隧道轴线地震响应分析[J]. 岩土力学, 2019, 40(9): 3645-3655.
[7] 田乙, 吴文兵, 蒋国盛, 梅国雄, 徐宝军, . 连续排水边界下分数阶黏弹性 饱和土体一维固结分析[J]. 岩土力学, 2019, 40(8): 3054-3061.
[8] 刘忠玉, 崔鹏陆, 郑占垒, 夏洋洋, 张家超. 基于非牛顿指数渗流和分数阶Merchant模型的 一维流变固结分析[J]. 岩土力学, 2019, 40(6): 2029-2038.
[9] 童立红, 王 珏, 郭生根, 朱怀龙, 徐长节, . 变荷载下连续排水边界黏弹性地基 一维固结性状分析[J]. 岩土力学, 2019, 40(5): 1862-1868.
[10] 周兴涛,盛 谦,崔 臻,冷先伦,付晓东,马亚丽娜, . 颗粒离散单元法动力人工边界设置方法[J]. , 2018, 39(7): 2671-2680.
[11] 王观石,熊 鹏,胡世丽,孟世明,龙 平,谭 谈,. 位移不连续模型在黏弹性节理刚度计算的应用[J]. , 2018, 39(6): 2175-2183.
[12] 艾智勇,张逸帆,王路君, . 层状横观各向同性地基平面应变问题的扩展精细积分解[J]. , 2018, 39(5): 1885-1890.
[13] 王 瑞, 胡志平, 张亚国, 张 勋, 柴少波, . 黏弹性介质中平、柱面波动传播的 应力场及应用探讨[J]. 岩土力学, 2018, 39(12): 4665-4672.
[14] 汪 磊,李林忠,徐永福,夏小和,孙德安,. 半透水边界下分数阶黏弹性饱和土一维固结特性分析[J]. , 2018, 39(11): 4142-4148.
[15] 李银平,孔庆聪,施锡林,李 硕,杨博进,杨春和,. 盐穴地下储库地表沉降的黏弹模型及应用[J]. , 2017, 38(7): 2049-2058.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .