岩土力学 ›› 2021, Vol. 42 ›› Issue (9): 2387-2394.doi: 10.16285/j.rsm.2021.0156

• 基础理论与实验研究 • 上一篇    下一篇

竖向阻隔墙中土工复合膨润土防水毯搭接 区渗透系数测试与分析

詹良通1, 2,丁兆华1, 2,谢世平3,李育超1, 2,何顺辉3   

  1. 1. 浙江大学 岩土工程研究所,浙江 杭州 310058;2. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058; 3. 天津中联格林科技发展有限公司,天津 300387
  • 收稿日期:2021-01-27 修回日期:2021-05-26 出版日期:2021-09-10 发布日期:2021-08-26
  • 作者简介:詹良通,男,1972年生,博士,教授,博士生导师,主要从事非饱和土力学与环境岩土工程的教学和科研。
  • 基金资助:
    国家重点研发计划(No.2018YFC1802300);苏州市民生科技项目—科技示范工程(No.SS201804-01)。

Test and analysis of hydraulic conductivity of geosynthetic clay liners overlap in vertical barrier wall

ZHAN Liang-tong 1, 2, DING Zhao-hua1, 2, XIE Shi-ping3, LI Yu-chao1, 2, HE Shun-hui3   

  1. 1. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. Key Laboratory of Soft Soils and Geoenvironmental Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China; 3. Tianjin Zhonglian Gelin Science and Technology Development Co. Ltd., Tianjin 300387, China
  • Received:2021-01-27 Revised:2021-05-26 Online:2021-09-10 Published:2021-08-26
  • Supported by:
    This work is supported by the National Key Research and Development Project of China(2018YFC1802300) and Suzhou Science and Technology Plan Project-Minsheng Project(SS201804-01).

摘要: 土工复合膨润土防水毯(geosynthetic clay liners,简称GCLs)在污染场地竖向阻隔墙中应用是一项新技术,通过防水毯相邻幅间搭接区域土工织物的绕渗控制是该技术关键点之一,目前尚缺乏可靠的试验数据支撑。研制了尺寸为1 200 mm× 700 mm×700 mm的搭接渗透仪器,在1 m水头差下开展了5级压力(10、25、50、100、150 kPa)下的GCL搭接渗透试验,测量了含500 mm搭接区的GCL渗流通量,探究了侧向压力和搭接区是否涂抹膨润土膏对等效渗透系数的影响。试验结果表明:(1)GCL搭接区在渗透初期存在明确的绕流现象,由于绕渗的存在,GCL搭接区域的等效渗透系数ko比完整GCL渗透系数大,搭接区未涂抹膨润土膏时,在低压力(p = 10 kPa)作用下前者是后者的5.6倍。(2)搭接区域等效渗透系数随侧向压力增大而减小,在搭接区未涂抹膨润土膏和低压力(p = 10 kPa)作用下,搭接区域等效渗透系数ko等于2.27×10?8 cm/s,当侧向压力达到100 kPa后,等效渗透系数ko降低至5.93×10?9 cm/s。(3)搭接区涂抹膨润土膏能有效提高防渗性能,在各级侧向压力下,GCL搭接区域等效渗透系数ko均低于未涂抹膨润土膏时的,且在高压力状态下(p = 150 kPa),ko值降低至5.15×10?10 cm/s。

关键词: 土工复合膨润土防水毯(GCL), 搭接, 渗透系数, 膨润土, 竖向阻隔墙

Abstract: Geosynthetic clay liners (GCLs) are newly used in combination with the vertical barrier wall in waste landfills. One of the critical points of this application is to control the preferential flow in the overlapping area of adjacent GCLs. However, there is still a lack of reliable data. This paper aimed to investigate the influence of the overburden pressure on the equivalent hydraulic conductivity (ko) of the overlapping area with bentonite pastes, to the reference base case in which no bentonite paste was presented. A penetration apparatus with internal dimensions of 1 200 mm×700 mm×700 mm(length×width×height) was presented. The 500 mm long GCL overlap was tested under a combination of the hydraulic head being 1 m and the overburden stress being 10, 25, 50, 100 and 150 kPa, respectively. It was found that: 1) The preferential flow around the overlapping area of GCLs occurred at the initial stage of penetration. The ko of the overlapping zone under an overburden pressure of 10 kPa was 5.6 times greater than that of the GCL due to the existing preferential flow. 2) The ko of the overlapping area decreased with an increase in the overburden pressure. The ko of the overlapping area subjected to a low overburden pressure of 10 kPa was equal to 2.27×10?8 cm/s, while it decreased to 5.93×10?9 cm/s when the overburden pressure reached to 100 kPa. 3) The permeability was significant reduced by the presence of bentonite pastes in the overlapping area. The ko of the GCL overlapping area was lower than that without the bentonite paste, and the value of ko reduced to 5.15×10?10 cm/s when the overburden pressure was as high as 150 kPa.

Key words: geosynthetic clay liner(GCL), overlap, hydraulic conductivity, bentonite, vertical barrier wall

中图分类号: 

  • TU470
[1] 刘丽, 吴羊, 李旭, 赵煜鑫, . 压实度对宽级配土水力特性的影响研究[J]. 岩土力学, 2021, 42(9): 2545-2555.
[2] 刘俊新, 唐伟, 李军润, 张建新, 郭招群, 陈龙, 刘育田, . 高温及碱性条件对高庙子钠基膨润土膨胀力的影响[J]. 岩土力学, 2021, 42(8): 2160-2172.
[3] 胡云世, 徐云山, 孙德安, 陈波, 曾召田, . 温度对颗粒膨润土热传导特性的影响[J]. 岩土力学, 2021, 42(7): 1774-1782.
[4] 傅鹤林, 安鹏涛, 李凯, 成国文, 李鲒, 余小辉, . 围岩非均质性对隧道突涌水的影响分析[J]. 岩土力学, 2021, 42(6): 1519-1528.
[5] 王英, 张虎元, 童艳梅, 周光平, . 接缝密封材料对缓冲砌块屏障封闭性能的影响[J]. 岩土力学, 2021, 42(6): 1648-1658.
[6] 鞠远江, 胡明鉴, 秦坤坤, 宋博, 孙子晨, . 珊瑚礁岛钙质砂细颗粒渗透运移规律研究[J]. 岩土力学, 2021, 42(5): 1245-1253.
[7] 张乐, 党发宁, 高俊, 丁九龙. 线性加载条件下考虑应力历史的饱和黏土一维非线性固结渗透试验研究[J]. 岩土力学, 2021, 42(4): 1078-1087.
[8] 江文豪, 詹良通. 考虑井阻效应及径向渗透系数变化下砂井 地基的大变形固结[J]. 岩土力学, 2021, 42(3): 755-766.
[9] 李瑛, 陈东, 刘兴旺, 谢锡荣, 童星, 张金红. 悬挂式止水帷幕深基坑减压降水的简化计算方法[J]. 岩土力学, 2021, 42(3): 826-832.
[10] 张虎元, 丁志南, 谭煜, 朱江鸿, 曹志伟, . 压实膨润土-砂混合物最佳养护湿度研究[J]. 岩土力学, 2021, 42(11): 2925-2933.
[11] 郑维翰, 李涛, 冯硕, 高玉峰, 刘月妙, . 高压实膨润土砌块接缝组合 热−水−力耦合效应试验装置研制及应用[J]. 岩土力学, 2021, 42(10): 2908-2918.
[12] 杨志浩, 岳祖润, 冯怀平, 叶朝良, 周江涛, 介少龙, . 重载铁路基床表层级配碎石渗透特性试验研究[J]. 岩土力学, 2021, 42(1): 193-202.
[13] 张虎元, 赵秉正, 童艳梅, . 混合型缓冲砌块导热性能及其均匀性研究[J]. 岩土力学, 2020, 41(S1): 1-8.
[14] 秦爱芳, 胡宏亮. 碱性溶液饱和高庙子钙基膨润土膨胀特性及预测[J]. 岩土力学, 2020, 41(S1): 123-131.
[15] 桂跃, 吴承坤, 赵振兴, 刘声钧, 刘锐, 张秋敏. 微生物分解有机质作用对泥炭土工程性质的影响[J]. 岩土力学, 2020, 41(S1): 147-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .