岩土力学 ›› 2021, Vol. 42 ›› Issue (11): 3069-3078.doi: 10.16285/j.rsm.2021.0261
徐浩淳1, 2, 3,金爱兵1, 2,赵怡晴1, 2,王本鑫1, 2,韦立昌1, 2
XU Hao-chun1, 2, 3, JIN Ai-bing1, 2, ZHAO Yi-qing1, 2, WANG Ben-xin1, 2, WEI Li-chang1, 2
摘要: 对25~1 000 ℃处理后含垂直和水平层理砂岩开展巴西劈裂试验,采用数字图像相关技术(digital imagine correlation,DIC)记录劈裂过程高温层理砂岩水平应变场演化规律,同时通过电镜扫描(scanning electron microscopy,SEM)研究不同温度下砂岩微观结构损伤。研究结果表明:层理砂岩劈裂破坏前应变集中可以分为两种类型:圆盘两端应变集中型(≤400 ℃)和圆盘中央应变集中型(>400 ℃)。随着温度升高,垂直和水平层理砂岩的抗拉强度均呈现出先增大后减小的趋势,200 ℃时达到最大值;600~1 000 ℃时,层理对砂岩抗拉强度的影响随温度升高逐渐降低,800~1 000 ℃存在使得温度成为影响抗拉强度主要因素的阈值温度。微观结构损伤分析表明,热处理温度较低时,基质主要表现为裂纹增多、长度延展,但晶体仍相对完整;层理面表现为孔隙数量增多和尺度增大;温度对层理破坏更大。温度较高时,基质和层理破坏程度相近,这也是热处理后,砂岩应变演化和强度变化的主因。
中图分类号:
[1] | 薛卉, 舒彪, 陈君洁, 路伟, 胡永鹏, 王益民, 曾凡, 黄若宸, . 高温高压下超临界二氧化碳作用对花岗岩 力学性质影响的试验研究[J]. 岩土力学, 2022, 43(2): 377-384. |
[2] | 任义, 高永涛, 吴顺川, 李栋栋, 甘一雄, . 花岗岩巴西劈裂试验的矩张量反演研究[J]. 岩土力学, 2022, 43(1): 235-245. |
[3] | 蒋浩鹏, 姜谙男, 杨秀荣. 基于Weibull分布的高温岩石统计损伤 本构模型及其验证[J]. 岩土力学, 2021, 42(7): 1894-1902. |
[4] | 贾蓬, 杨其要, 刘冬桥, 王述红, 赵永, . 高温花岗岩水冷却后物理力学特性及微观破裂特征[J]. 岩土力学, 2021, 42(6): 1568-1578. |
[5] | 张闯, 任松, 张平, 隆能增, . 水、孔洞及层理耦合作用下的千枚岩 巴西劈裂试验研究[J]. 岩土力学, 2021, 42(6): 1612-1624. |
[6] | 平琦, 苏海鹏, 马冬冬, 张号, 张传亮, . 不同高温作用后石灰岩物理与动力特性试验研究[J]. 岩土力学, 2021, 42(4): 932-942. |
[7] | 余莉, 彭海旺, 李国伟, 张钰, 韩子豪, 祝瀚政. 花岗岩高温−水冷循环作用下的试验研究[J]. 岩土力学, 2021, 42(4): 1025-1035. |
[8] | 叶智刚, 王路君, 朱斌, 黄家晟, 徐文杰, 陈云敏, . 考虑热渗效应的高温管道−饱和地基相互作用研究[J]. 岩土力学, 2021, 42(3): 691-699. |
[9] | 孙文进, 金爱兵, 王树亮, 赵怡晴, 韦立昌, 贾玉春, . 基于DIC的高温砂岩劈裂力学特性研究[J]. 岩土力学, 2021, 42(2): 511-518. |
[10] | 李浩然, 王子恒, 孟世荣, 赵维刚, 陈锋, . 高温三轴应力下大理岩损伤演化与声发射 活动特征研究[J]. 岩土力学, 2021, 42(10): 2672-2682. |
[11] | 刘华, 何江涛, 赵茜, 王铁行, 郭超翊, . 酸污染原状黄土渗透微观特征演变规律试验研究[J]. 岩土力学, 2020, 41(3): 765-772. |
[12] | 田威, 王震, 张丽, 余宸, . 高温作用后3D打印岩体试样力学性能初探[J]. 岩土力学, 2020, 41(3): 961-969. |
[13] | 金爱兵, 王树亮, 王本鑫, 孙浩, 陈帅军, 朱东风, . 基于DIC的3D打印交叉节理试件破裂机制研究[J]. 岩土力学, 2020, 41(12): 3862-3872. |
[14] | 金爱兵, 王树亮, 魏余栋, 孙浩, 韦立昌, . 不同冷却条件对高温砂岩物理力学性质的影响[J]. 岩土力学, 2020, 41(11): 3531-3539. |
[15] | 史旦达, 毛逸瑶, 杨勇, 原媛, 郝冬雪, . 基于DIC技术的砂土中圆形锚板上拔土体 变形特性试验研究[J]. 岩土力学, 2020, 41(10): 3201-3213. |
|