岩土力学 ›› 2022, Vol. 43 ›› Issue (S1): 452-468.doi: 10.16285/j.rsm.2021.0737

• 岩土工程研究 • 上一篇    下一篇

隧道工程结构模型试验系统研究综述与展望

刘博1,徐飞2, 3,赵维刚2,高阳2   

  1. 1. 北京交通大学 土木建筑工程学院,北京 100044;2. 石家庄铁道大学 河北省大型结构健康诊断与控制实验室,河北 石家庄 050043; 3. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071
  • 收稿日期:2021-05-15 修回日期:2022-03-26 出版日期:2022-06-30 发布日期:2022-07-15
  • 作者简介:刘博,女,1992年生,博士研究生,主要从事地铁隧道结构管片裂损演化过程及其渐进性破坏机制等方面的研究。

Review and prospect of model test system for tunnel engineering structure

LIU Bo1, XU Fei2, 3, ZHAO Wei-gang2, GAO Yang2   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; 2. Key Laboratory of Large Structure Health Monitoring and Control, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2021-05-15 Revised:2022-03-26 Online:2022-06-30 Published:2022-07-15

摘要: 近几年隧道工程向长大深、多场多相耦合方向发展,隧道在施工和运营时极易诱发结构失稳病害。针对山岭隧道、水下隧道和城市地铁隧道阐述隧道工程结构模型试验系统设计的研究现状,并指出目前存在的相关问题。结果表明:山岭隧道模型试验考虑了隧道穿越不良地质体,承受高地应力、高岩溶水压力和高地震动等荷载条件,但受装置尺寸限制,无法模拟围岩高地应力水平。山岭隧道模型试验以平面应变模型为主,缺乏大型真三维应力条件下多种错动形式的活化错动断层的模拟。水下隧道模型试验已实现稳定的高水压力加载,但仍无法实现应力场与渗流场耦合的真三维水下环境模拟且试验箱可视性较差,仅能通过洞口涌水量表征隧道的渗透水状态,无法得到围岩内部变形规律。城市地铁隧道运营时一般受列车动荷载、路面荷载、邻近施工扰动的共同影响,目前模型试验通常考虑单一荷载下隧道的振动响应,且往往忽视了管片接缝和裂隙等结构特征,需要设计新颖、高效的局部加载装置,得到管片薄弱环节的极限变形特征,保障地铁运营安全。最后,总结隧道工程模型试验遇到的瓶颈问题,提出需要研制透明相似材料改善模型内部可视化功能,针对高地应力条件下不良地质条件研制尺寸可拓展的三维静动耦合加载模型试验系统,并结合微型低功耗无线监测传感元件与三维可视化结果展示平台,建立适用于复杂环境中的隧道工程结构模型试验系统。

关键词: 山岭隧道, 水下隧道, 城市地铁隧道, 模型试验系统

Abstract: In recent years, tunnel engineering is developing towards super-long and deep, multi-field and multi-phase coupling, thus, which easily induce the structural instability during tunnel construction and operation. Aiming at the mountain tunnel, underwater tunnel and urban tunnel, this paper expounds the research status of structural model test system, and points out the existing issues. The results show that: mountain tunnel model test takes into account passing through the adverse geological rock, and the loading conditions such as high ground stress, high karst hydraulic pressure and high seismic intensity. However, it’s hard to simulate the high stress of surrounding rock due to the size limitation of the apparatus. The model test of mountain tunnel is mainly based on plane strain model, which lacks the simulation of active fault with various dislocation forms under large-scale true three-dimensional stress condition. The model test of underwater tunnel has achieved stable high water pressure loading, but it is still unable to simulate the true three-dimensional underwater environment of the coupled stress field and seepage field. Additionally, the visibility of the chamber is poor, the seepage of the tunnel is only be characterized by the water inflow at the entrance, which makes it difficult to obtain the deformation law of the surrounding rock. Urban tunnel is affected by train dynamic load, pavement load and adjacent construction disturbance. At present, the model test usually considers the vibration response of the tunnel under a single load, and often ignores the structural characteristics such as segment joints and cracks. Thus, it is necessary to design novel and efficient local loading device to analyze the ultimate deformation characteristics of weak parts of segment to ensure the safety of subway operation. Finally, the bottleneck issues of tunnel engineering model test are summarized, and the internal visualization of the apparatus needs to be improved based on transparent similar materials. Aiming at the adverse geological conditions under high geostress conditions, a three-dimensional static-dynamic coupled model test system with expandable size is developed. Combining with the micro low-power wireless monitoring sensors and 3D visualization results display platform, a tunnel engineering structure model test system suitable for complex environment is established.

Key words: mountain tunnel, underwater tunnel, urban metro tunnel, model test system

中图分类号: 

  • U459
[1] 郑立夫, 高永涛, 周喻, 田书广. 基于流固耦合理论水下隧道冻结壁厚度优化研究[J]. 岩土力学, 2020, 41(3): 1029-1038.
[2] 陈舞, 张国华, 王浩, 陈礼彪, . 基于粗糙集条件信息熵的山岭隧道坍塌风险评价[J]. 岩土力学, 2019, 40(9): 3549-3558.
[3] 彭祖昭,封 坤,肖明清,何 川,蒋 超,陈怀伟,. 基于压力拱理论的水下隧道合理覆岩厚度研究[J]. , 2018, 39(7): 2609-2616.
[4] 张伟杰 ,李术才 ,魏久传 ,张庆松 ,张 霄 ,李志鹏 ,谢道雷,. 三维注浆模型试验系统研制及应用[J]. , 2016, 37(3): 902-911.
[5] 陶连金,侯 森,赵 旭,仇文革,郭 飞,李书龙. 不同仰坡度数的山岭隧道洞口段动力响应振动台试验研究[J]. , 2014, 35(S1): 91-98.
[6] 吴 冬,高 波,申玉生,周佳媚. 隧道仰坡地震动力响应特性振动台模型试验研究[J]. , 2014, 35(7): 1921-1928.
[7] 蒋树屏,方 林,林 志. 不同埋置深度的山岭隧道地震响应分析[J]. , 2014, 35(1): 211-216.
[8] 蔚立元 ,陈晓鹏 ,韩立军 ,王迎超 . 基于复变函数方法的水下隧道围岩弹性分析[J]. , 2012, 33(S2): 345-351.
[9] 张志强,何本国,王志杰,李化云,刘赟君. 富水断层隧道高位排水工法及其作用效果研究[J]. , 2012, 33(11): 3359-3366.
[10] 陈洁金,周 峰,阳军生,刘宝琛. 山岭隧道塌方风险模糊层次分析[J]. , 2009, 30(8): 2365-2370.
[11] 王秀英,谭忠盛,王梦恕,张 弥. 高水位隧道堵水限排围岩与支护相互作用分析[J]. , 2008, 29(6): 1623-1628.
[12] 王秀英,谭忠盛,王梦恕,张 弥. 山岭隧道堵水限排围岩力学特性分析[J]. , 2008, 29(1): 75-80.
[13] 刘元雪 ,蒋树屏 ,谢 锋 ,王培勇, . 重庆市两江隧道合理覆盖层厚度研究[J]. , 2006, 27(S2): 709-713.
[14] 高新强 ,仇文革 ,高 扬, . 山岭隧道高水压下衬砌结构平面数值分析[J]. , 2005, 26(3): 365-369.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .