岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 117-129.doi: 10.16285/j.rsm.2021.0751
李冬冬1, 2, 3,盛谦2,肖明3,王小毛1
LI Dong-dong1, 2, 3, SHENG Qian2, XIAO Ming3, WANG Xiao-mao1
摘要: 通过改进的PFC-FLAC离散−连续耦合计算方法,提出了一种基于FLAC连续模型耦合区域节点速率双线性插值的PFC颗粒流声发射片模拟方法以及基于声发射强度的围岩破坏区深度细观角度判别方法,并将其应用于地下厂房洞室开挖面、岩锚吊车梁与岩壁接触面等局部围岩损伤细观机制与破化特性研究。研究结果表明:浅层围岩接触力链逐渐稀疏,大量微裂纹发育并汇集成宏观裂隙,最终出现浅层破裂区,呈拉裂破坏;随着距离开挖面的增大,围岩从开挖前期受力较大产生破坏、到开挖后期只有少量微裂纹产生,对应了围岩回弹卸荷区深度。在岩壁围岩劣化和吊车梁超载的情况下,吊车梁与岩壁竖直接触面和倾斜接触面分别发育大量拉裂纹和剪裂纹,宏观表现为拉裂破坏与滑移破坏。上述分析结果与三维有限元方法相一致,并弥补了后者围岩破坏显示方法单一、难以描述围岩损伤程度变化的缺点,为研究地下厂房洞室大变形与应力集中部位的宏细观特性与损伤机制提供参考。
中图分类号:
[1] | 张东晓, 郭伟耀, 赵同彬, 谷雪斌, 陈玏昕, . 岩石I型裂纹定向扩展规律试验研究[J]. 岩土力学, 2022, 43(S2): 231-244. |
[2] | 王立, 倪彬, 谢伟, 王书昭, 寇坤, 赵奎, . 不同粒径黄砂岩微观−宏观裂纹演化机制研究[J]. 岩土力学, 2022, 43(S2): 373-381. |
[3] | 余伟健, 李可, 刘泽, 郭涵潇, 安百富, 王平, . 煤巷弱胶结顶板稳定性分析与变形控制技术[J]. 岩土力学, 2022, 43(S2): 382-391. |
[4] | 邓鹏海, 刘泉声, 黄兴, 潘玉丛, 伯音, . 水平层状软弱围岩破裂碎胀大变形机制 有限元−离散元耦合数值模拟研究[J]. 岩土力学, 2022, 43(S2): 508-523. |
[5] | 徐浩淳, 金爱兵, 赵怡晴, 陈哲, . 热处理砂岩不同接触角巴西劈裂数值模拟研究[J]. 岩土力学, 2022, 43(S2): 588-597. |
[6] | 岑夺丰, 刘畅, 黄达. 灰岩层面拉剪力学特性及层面起伏效应研究[J]. 岩土力学, 2022, 43(S1): 77-87. |
[7] | 朱星, 刘汉香, 胡桔维, 范杰, . 砂岩破坏声发射临界慢化前兆特征试验研究[J]. 岩土力学, 2022, 43(S1): 164-172. |
[8] | 胡训健, 卞康, 刘建, 谢正勇, 陈明, 李冰洋, 岑越, . 离散裂隙网络对岩石力学性质和声发射特性 影响的颗粒流分析[J]. 岩土力学, 2022, 43(S1): 542-552. |
[9] | 孙冰, 唐文福, 曾晟, 侯珊珊, 方耀楚, . 基于自组织临界理论的岩石声发射能量 与时间的统计分析[J]. 岩土力学, 2022, 43(9): 2525-2538. |
[10] | 康永水, 耿志, 刘泉声, 刘滨, 朱元广, . 我国软岩大变形灾害控制技术与方法研究进展[J]. 岩土力学, 2022, 43(8): 2035-2059. |
[11] | 刘成禹, 郑道哲, 张向向, 陈成海, 曹洋兵, . 冻融温变速率对岩石受载特性的影响规律[J]. 岩土力学, 2022, 43(8): 2071-2082. |
[12] | 程建龙, 邹清友, 杨圣奇, 李晓昭, 梁泉, 曲磊, 梅炎, . 水力切缝上方TBM滚刀贯入破坏机制模拟研究[J]. 岩土力学, 2022, 43(8): 2317-2326. |
[13] | 张海龙, 汤杨, 任汀, 张东明, 王俊杰, 葛素刚, 大久保诚介. 复合地层隧道围岩强度实时估算研究[J]. 岩土力学, 2022, 43(7): 1877-1883. |
[14] | 王刚, 宋磊博, 刘夕奇, 包春燕, 吝曼卿, 刘广建, . 非贯通节理花岗岩剪切断裂力学特性及 声发射特征研究[J]. 岩土力学, 2022, 43(6): 1533-1545. |
[15] | 池小楼, 杨科, 刘文杰, 付强, 魏祯, . 大倾角煤层分层综采再生顶板破断规律研究[J]. 岩土力学, 2022, 43(5): 1391-1400. |
|