岩土力学 ›› 2021, Vol. 42 ›› Issue (12): 3356-3365.doi: 10.16285/j.rsm.2021.0848

• 岩土工程研究 • 上一篇    下一篇

滚石冲击改进型开口帘式网耗能机制研究

王东坡1,何启维1,刘彦辉2,温继伟1,李伟1   

  1. 1. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,四川 成都 610059;2. 中铁第一勘察设计院集团有限公司,陕西 西安 710043
  • 收稿日期:2021-06-07 修回日期:2021-07-07 出版日期:2021-12-13 发布日期:2021-12-14
  • 作者简介:王东坡,男,1984年生,博士,博士后,教授,博士生导师,主要从事地质灾害冲击动力学方面的研究
  • 基金资助:
    国家自然科学基金(No.41877266);四川省杰出青年科技人才项目(No.2020JDJQ0044)。

Research on the energy dissipation mechanism of rockfall impacts on the improved rockfall attenuator barrier

WANG Dong-po1, HE Qi-wei1, LIU Yan-hui2, WEN Ji-wei1, LI wei1   

  1. 1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan 610059, China; 2. China Railway First Survey and Design Institute Group Co., Ltd., Xi’an, Shaanxi 710043, China
  • Received:2021-06-07 Revised:2021-07-07 Online:2021-12-13 Published:2021-12-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41877266) and the Science Foundation for Distinguished Young Scholars of Sichuan Province(2020JDJQ0044).

摘要: 帘式网是以引导、消能为主要作用机制的滚石柔性防护结构。传统帘式网因受制于维护难、成本高等问题,阻碍了其在滚石防治领域的推广应用。为此,基于下开口设计理念并优化传统帘式网拖尾长度提出了一种改进型开口帘式网。通过开展滚石冲击现场原位试验,研究不同拖尾长度对改进型开口帘式网耗能机制的影响。试验结果表明:改进型开口帘式网解决了滚石停滞网内清理不便的问题,其自身的裹挟、摩擦作用有效发挥了结构的柔性耗能特性,从而降低了滚石冲击能量;当拖尾长度由3 m增加到7 m时,滚石动能衰减率提高约20%,但其增幅呈下降趋势。为进一步提升改进型开口帘式网的耗能效果,通过数值模拟研究了滚石不同冲击位置和冲击角度对帘式网耗能效果的影响。模拟结果表明:滚石冲击帘式网中部时动能衰减率高于边侧位置,最高可提升20%;当滚石冲击方向与帘式网的夹角近似为45o时,滚石动能衰减率最高可达74.1%。因此,在实际工程中可通过合理设置帘式网拖尾长度、布设位置与倾斜角度使其耗能效果达到最大化。

关键词: 滚石冲击, 改进型开口帘式网, 耗能机制, 原位试验, 数值模拟

Abstract: With the main mechanisms of energy guiding and energy dissipation, the rockfall attenuator barrier has become a flexible structure to control rockfall disaster. The problems of difficult maintenance and high cost hinder the wide application of classic rockfall attenuator barriers in the field of rockfall protection. Therefore, combining with the lower open-ended design concept, we optimize the extension length and propose an improved rockfall attenuator barrier. In this study, the energy dissipation mechanism of the improved rockfall attenuator barrier under different extension lengths was investigated, by carrying out in-situ tests of the rockfall impact. The results show that the improved rockfall attenuator barrier is effective in cleaning up the rockfall stopped in the mesh. The constraint and friction effect of the improved rockfall attenuator barrier can effectively exert its flexible energy dissipation characteristics, thus reducing the impact energy of the rockfall. When the extension length of the improved rockfall attenuator barrier increases from 3 m to 7 m, the energy attenuation rate of the rockfall increases by approximately 20%. However, the increment of the energy attenuation rate gradually decreases with the increase of the extension length. To further improve the energy dissipation effect of the improved rockfall attenuator barrier, the influence of impact positions and angles of the rockfall on the energy dissipation effect of the improved rockfall attenuator barrier was studied by numerical simulation. The simulation results show that the energy attenuation rate was the highest when the rockfall impacted the middle position of the improved rockfall attenuator barrier, and the energy attenuation rate was increased by 20% compared with the position at the side of the impact edge. The energy attenuation rate of the rockfall reached the highest at 74.1%, when the angle between the impact direction of the rockfall and the improved rockfall attenuator barrier was approximately 45o. Therefore, the energy dissipation effect of the rockfall attenuator barrier can be maximized by reasonably setting extension length, installation location and inclination angle in engineering practice.

Key words: rockfall impacts, improved rockfall attenuator barrier, energy dissipation mechanism, in-situ test, numerical simulation

中图分类号: 

  • P 64
[1] 贺勇, 胡广, 张召, 娄伟, 邹艳红, 李星, 张可能, . 污染场地六价铬迁移转化机制与数值模拟研究[J]. 岩土力学, 2022, 43(2): 528-538.
[2] 魏天宇, 王旭宏, 吕涛, 胡大伟, 周辉, 洪雯. 湿化膨胀与掺砂率对混合型缓冲材料 THM耦合过程的影响分析[J]. 岩土力学, 2022, 43(2): 549-562.
[3] 侯晓萍, 樊恒辉. 基于COMSOL Multiphysics的非饱和 裂隙土降雨入渗特性研究[J]. 岩土力学, 2022, 43(2): 563-572.
[4] 马成昊, 朱长歧, 刘海峰, 崔翔, 王天民, 姜开放, 易明星, . 土的颗粒形貌研究现状及展望[J]. 岩土力学, 2021, 42(8): 2041-2058.
[5] 崔溦, 王利新, 江志安, 王超, 王枭华, 张社荣, . 基于修正立方定律的岩体粗糙裂隙网络 注浆过程模拟研究[J]. 岩土力学, 2021, 42(8): 2250-2258.
[6] 朱淳, 何满潮, 张晓虎, 陶志刚, 尹乾, 李利峰, . 恒阻大变形锚杆非线性力学模型 及恒阻行为影响参数分析[J]. 岩土力学, 2021, 42(7): 1911-1924.
[7] 王兆耀, 刘红军, 杨奇, 赵真, 胡瑞庚, . 波流作用下大直径单桩的局部冲刷特征分析[J]. 岩土力学, 2021, 42(4): 1178-1185.
[8] 陈猛, 崔秀文, 颜鑫, 王浩, 王二磊. 岩石−钢纤维混凝土复合层抗压强度预测模型[J]. 岩土力学, 2021, 42(3): 638-646.
[9] 石峰, 卢坤林, 尹志凯. 平移模式下刚性挡土墙三维被动滑裂面的确定与土压力计算方法研究[J]. 岩土力学, 2021, 42(3): 735-745.
[10] 侯振坤, 唐孟雄, 胡贺松, 黎剑华, 张树文, 徐晓斌, 刘春林, . 随钻跟管桩竖向承载性能原位试验 与室内物理模拟试验对比研究[J]. 岩土力学, 2021, 42(2): 419-429.
[11] 李红星, 冯世进, 何邵华, 张晓磊, 孙达明, . 砂土场地光热发电新型高强预应力混凝土短桩 基础受力特性研究[J]. 岩土力学, 2021, 42(12): 3217-3226.
[12] 梅锦玲, 曹洪, 骆冠勇, 潘泓, . 准三维有限元模型在多层地基区域渗流中 的扩展与适宜性分析[J]. 岩土力学, 2021, 42(12): 3428-3439.
[13] 郭金刚, 李耀晖, 何富连, 陈见行, 赵光明, 张俊文, . 基于残余剪切强度的全长黏结锚杆拉拔模拟[J]. 岩土力学, 2021, 42(11): 2953-2960.
[14] 金爱兵, 陈帅军, 赵安宇, 孙浩, 张玉帅, . 基于无人机摄影测量的露天矿边坡数值模拟[J]. 岩土力学, 2021, 42(1): 255-264.
[15] 李军, 翟文宝, 陈朝伟, 柳贡慧, 周英操, . 基于零厚度内聚力单元的水力裂缝 随机扩展方法研究[J]. 岩土力学, 2021, 42(1): 265-279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王川婴,胡培良,孙卫春. 基于钻孔摄像技术的岩体完整性评价方法[J]. , 2010, 31(4): 1326 -1330 .
[2] 李华明,蒋关鲁,刘先峰. CFG桩加固饱和粉土地基的动力特性试验研究[J]. , 2010, 31(5): 1550 -1554 .
[3] 谈云志,孔令伟,郭爱国,万 智. 压实红黏土水分传输的毛细效应与数值模拟[J]. , 2010, 31(7): 2289 -2294 .
[4] 王云岗,熊 凯,凌道盛. 基于平动加转动运动场的边坡稳定上限分析[J]. , 2010, 31(8): 2619 -2624 .
[5] 龙 照,赵明华,张恩祥,刘峻龙. 锚杆临界锚固长度简化计算方法[J]. , 2010, 31(9): 2991 -2994 .
[6] 史旦达,周 健,贾敏才,杨永香. 考虑蠕变性状的港区软土地基参数反演和长期沉降预测[J]. , 2009, 30(3): 746 -750 .
[7] 邓宗伟,冷伍明,李志勇,岳志平. 喷混凝土边坡温度场与应力场耦合的有限元时效分析[J]. , 2009, 30(4): 1153 -1158 .
[8] 丁洲祥,仇玉良,李 涛. 双面排水非线性固结超静孔压的非对称性解析[J]. , 2012, 33(6): 1829 -1838 .
[9] 田堪良 ,张慧莉 ,马 俊 . 基于强度条件的黄土结构性静力试验研究[J]. , 2012, 33(7): 1993 -1999 .
[10] 费 康 ,王军军 ,陈 毅 . 桩承式路堤土拱效应简化分析方法[J]. , 2012, 33(8): 2408 -2414 .