岩土力学 ›› 2022, Vol. 43 ›› Issue (1): 195-204.doi: 10.16285/j.rsm.2021.1201

• 岩土工程研究 • 上一篇    下一篇

隧道开挖地表沉降动态预测及影响因素分析

江帅1, 2,朱勇2, 3,栗青1,周辉2, 3,涂洪亮2, 3,杨凡杰2, 3   

  1. 1. 沈阳工业大学 建筑与土木工程学院,辽宁 沈阳 110870;2. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点试验室, 湖北 武汉 430071;3. 中国科学院大学,北京 100049
  • 收稿日期:2021-08-03 修回日期:2021-09-10 出版日期:2022-01-10 发布日期:2022-01-07
  • 通讯作者: 周辉,男,1972年生,博士,研究员,博士生导师,主要从事岩石力学试验、理论、数值分析与工程安全性分析方面的研究。 E-mail: hzhou@whrsm.ac.cn E-mail:17854114851@163.com
  • 作者简介:江帅,男,1995年生,硕士研究生,主要从事隧道及地下空间稳定性分析方面的研究。
  • 基金资助:
    国家重点研发计划项目(No. 2019YFC0605104,No. 2019YFC0605103);国家自然科学基金专项项目(No. 41941018);中国科学院科技服务网络计划(STS计划)项目(No.KFJ-STS-QYZD-174)

Dynamic prediction and influence factors analysis of ground surface settlement during tunnel excavation

JIANG Shuai1, 2, ZHU Yong2, 3, LI Qing1, ZHOU Hui2, 3, TU Hong-liang2, 3, YANG Fan-jie2, 3   

  1. 1. School of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang , Liaoning 110870, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-08-03 Revised:2021-09-10 Online:2022-01-10 Published:2022-01-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (2019YFC0605104, 2019YFC0605103), the National Natural Science Foundation of China (41941018) and the Science and Technology Service Network Initiative of the Chinese Academy of Sciences (KFJ-STS-QYZD-174).

摘要: 城市地铁隧道施工不可避免地对围岩产生扰动引起地表沉降,动态预测隧道开挖引起的地表沉降是确保地表建构筑物与隧道施工安全的重要基础。针对隧道施工过程中地表沉降难以准确动态预测的问题,在定义纵向开挖度系数? 的基础上,建立横向地表沉降动态预测模型。该模型能够描述同一监测位置沉降曲线随掌子面推进而不断变化的规律,实现施工现场沉降动态预测。结果表明:在特定约束条件下,该模型能够退化为Peck模型以及随机介质理论预测模型;通过现场施工验证了该动态预测模型的准确性与适用性;基于纵向开挖度系数? 将隧道沿纵向分为强烈、中度和轻度共3个影响段,较好地反映了开挖掌子面在不同位置对同一监测截面的影响程度;通过分析建筑物和隔离桩对地表沉降曲线的影响可知,建筑物与其附近地层呈现出协同变形、共同承载的特征,在隧道一侧添加地质钻隔离桩对该侧地表沉降值的减小程度可达71.9%。研究成果对滇中引水工程现场施工与类似工程具有一定指导和借鉴意义。

关键词: 沉降预测模型, 动态预测, 纵向开挖度系数, 随机介质理论, 影响分段, 现场监测

Abstract: The construction of urban subway tunnel inevitably produces disturbance to surrounding rock and causes ground surface settlement. Dynamic prediction of ground surface settlement caused by tunnel excavation is an important method to ensure the safety of above-ground buildings and tunnel construction. In view of the difficulty of accurate dynamic prediction of ground surface settlement during tunnel construction, based on the definition of longitudinal excavation coefficient ? , a dynamic prediction model of lateral ground surface settlement is established. The model can accurately describe the variation of the settlement of the same monitoring location with the advancement of the tunnel face, and then realize the dynamic prediction of the ground surface settlement at the construction site. The results show that under certain constraints, this model can be degenerated into Peck model and stochastic medium theory prediction model. The accuracy and applicability of the dynamic prediction model are verified by on-site construction. The tunnel can be divided into three affected segments longitudinally (i.e., intense influence, moderate influence, and mild influence) based on the obtained ? , which well reflected the influence degree of the excavated tunnel face on the same monitoring section at different positions. Through the analysis of the influence of the buildings and isolation piles on the ground surface settlement curve, it can be found that the building and its adjacent ground surface present the characteristics of cooperative deformation and joint bearing. Moreover, installing geological drill isolation piles on the side of the tunnel can reduce the ground surface settlement of that side up to 71.9%. The research results have a certain guiding and reference significance for the on-site construction of the Central Yunnan Water Diversion Project and similar projects.

Key words: settlement prediction model, dynamic prediction, longitudinal excavation coefficient, stochastic medium theory, affected segmentation, on-site monitoring

中图分类号: 

  • TU 452
[1] 赵志强, 戴福初, 闵弘, 谭晔, . 原状黄土−古土壤中水分入渗过程研究[J]. 岩土力学, 2021, 42(9): 2611-2621.
[2] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[3] 何海杰, 兰吉武, 高 武, 陈云敏, 马鹏程, 肖电坤, . 压缩空气排水井在填埋场滑移控制中的应用及分析[J]. 岩土力学, 2019, 40(1): 343-350.
[4] 董志宏, 丁秀丽, 黄书岭, 邬爱清, 陈胜宏, 周 钟, . 高地应力区大型洞室锚索时效受力特征 及长期承载风险分析[J]. 岩土力学, 2019, 40(1): 351-362.
[5] 吴建涛, 叶 霄, 李国维, 蒋 超, 曹雪山, . 高路堤下PHC桩加固软土地基的承载及变形特性[J]. 岩土力学, 2018, 39(S2): 351-358.
[6] 陈晋龙,李锦辉,程 鹏,宋 磊,周 腾. 植被作用下土质覆盖层渗透特性的现场试验[J]. , 2018, 39(1): 222-228.
[7] 许 度,冯夏庭,李邵军,吴世勇,邱士利,周扬一,高要辉,. 基于三维激光扫描的锦屏地下实验室岩体变形破坏特征关键信息提取技术研究[J]. , 2017, 38(S1): 488-495.
[8] 魏 纲,周杨侃. 随机介质理论预测近距离平行盾构引起的地表沉降[J]. , 2016, 37(S2): 113-119.
[9] 庄海洋,张艳书,薛栩超,徐 烨,. 深软场地地铁狭长深基坑变形特征实测与已有统计结果的对比分析[J]. , 2016, 37(S2): 561-570.
[10] 沈建文,刘 力,. 盾构隧道施工对临近桥桩影响数值及现场监测研究[J]. , 2015, 36(S2): 709-714.
[11] 沙 鹏 ,伍法权 ,李 响 ,梁 宁 ,常金源,. 高地应力条件下层状地层隧道围岩挤压变形与支护受力特征[J]. , 2015, 36(5): 1407-1414.
[12] 李 雪 ,周顺华 ,宫全美 ,陈长江, . 大断面深埋高水压地铁盾构隧道周边土压力作用模式评价[J]. , 2015, 36(5): 1415-1420.
[13] 蔡海兵 ,彭立敏 ,郑腾龙,. 隧道水平冻结壁强制解冻期地表沉降的预测方法[J]. , 2015, 36(12): 3516-3522.
[14] 徐鹏飞 ,李耀良 ,徐 伟,. 压入式沉井施工对环境影响的现场监测研究[J]. , 2014, 35(4): 1084-1094.
[15] 蔡海兵 ,彭立敏 ,郑腾龙,. 隧道水平冻结施工期地表融沉的历时预测模型[J]. , 2014, 299(2): 504-510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .