岩土力学 ›› 2022, Vol. 43 ›› Issue (1): 195-204.doi: 10.16285/j.rsm.2021.1201
江帅1, 2,朱勇2, 3,栗青1,周辉2, 3,涂洪亮2, 3,杨凡杰2, 3
JIANG Shuai1, 2, ZHU Yong2, 3, LI Qing1, ZHOU Hui2, 3, TU Hong-liang2, 3, YANG Fan-jie2, 3
摘要: 城市地铁隧道施工不可避免地对围岩产生扰动引起地表沉降,动态预测隧道开挖引起的地表沉降是确保地表建构筑物与隧道施工安全的重要基础。针对隧道施工过程中地表沉降难以准确动态预测的问题,在定义纵向开挖度系数? 的基础上,建立横向地表沉降动态预测模型。该模型能够描述同一监测位置沉降曲线随掌子面推进而不断变化的规律,实现施工现场沉降动态预测。结果表明:在特定约束条件下,该模型能够退化为Peck模型以及随机介质理论预测模型;通过现场施工验证了该动态预测模型的准确性与适用性;基于纵向开挖度系数? 将隧道沿纵向分为强烈、中度和轻度共3个影响段,较好地反映了开挖掌子面在不同位置对同一监测截面的影响程度;通过分析建筑物和隔离桩对地表沉降曲线的影响可知,建筑物与其附近地层呈现出协同变形、共同承载的特征,在隧道一侧添加地质钻隔离桩对该侧地表沉降值的减小程度可达71.9%。研究成果对滇中引水工程现场施工与类似工程具有一定指导和借鉴意义。
中图分类号:
[1] | 赵志强, 戴福初, 闵弘, 谭晔, . 原状黄土−古土壤中水分入渗过程研究[J]. 岩土力学, 2021, 42(9): 2611-2621. |
[2] | 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98. |
[3] | 何海杰, 兰吉武, 高 武, 陈云敏, 马鹏程, 肖电坤, . 压缩空气排水井在填埋场滑移控制中的应用及分析[J]. 岩土力学, 2019, 40(1): 343-350. |
[4] | 董志宏, 丁秀丽, 黄书岭, 邬爱清, 陈胜宏, 周 钟, . 高地应力区大型洞室锚索时效受力特征 及长期承载风险分析[J]. 岩土力学, 2019, 40(1): 351-362. |
[5] | 吴建涛, 叶 霄, 李国维, 蒋 超, 曹雪山, . 高路堤下PHC桩加固软土地基的承载及变形特性[J]. 岩土力学, 2018, 39(S2): 351-358. |
[6] | 陈晋龙,李锦辉,程 鹏,宋 磊,周 腾. 植被作用下土质覆盖层渗透特性的现场试验[J]. , 2018, 39(1): 222-228. |
[7] | 许 度,冯夏庭,李邵军,吴世勇,邱士利,周扬一,高要辉,. 基于三维激光扫描的锦屏地下实验室岩体变形破坏特征关键信息提取技术研究[J]. , 2017, 38(S1): 488-495. |
[8] | 魏 纲,周杨侃. 随机介质理论预测近距离平行盾构引起的地表沉降[J]. , 2016, 37(S2): 113-119. |
[9] | 庄海洋,张艳书,薛栩超,徐 烨,. 深软场地地铁狭长深基坑变形特征实测与已有统计结果的对比分析[J]. , 2016, 37(S2): 561-570. |
[10] | 沈建文,刘 力,. 盾构隧道施工对临近桥桩影响数值及现场监测研究[J]. , 2015, 36(S2): 709-714. |
[11] | 沙 鹏 ,伍法权 ,李 响 ,梁 宁 ,常金源,. 高地应力条件下层状地层隧道围岩挤压变形与支护受力特征[J]. , 2015, 36(5): 1407-1414. |
[12] | 李 雪 ,周顺华 ,宫全美 ,陈长江, . 大断面深埋高水压地铁盾构隧道周边土压力作用模式评价[J]. , 2015, 36(5): 1415-1420. |
[13] | 蔡海兵 ,彭立敏 ,郑腾龙,. 隧道水平冻结壁强制解冻期地表沉降的预测方法[J]. , 2015, 36(12): 3516-3522. |
[14] | 徐鹏飞 ,李耀良 ,徐 伟,. 压入式沉井施工对环境影响的现场监测研究[J]. , 2014, 35(4): 1084-1094. |
[15] | 蔡海兵 ,彭立敏 ,郑腾龙,. 隧道水平冻结施工期地表融沉的历时预测模型[J]. , 2014, 299(2): 504-510. |
|