岩土力学 ›› 2022, Vol. 43 ›› Issue (5): 1277-1288.doi: 10.16285/j.rsm.2021.1298

• 基础理论与实验研究 • 上一篇    下一篇

盾构扩挖地铁车站结构地震反应特性振动台试验

安军海1,陶连金2,蒋录珍1   

  1. 1. 河北科技大学 建筑工程学院,河北 石家庄 050018; 2. 北京工业大学 城市与工程安全减灾教育部重点实验室,北京 100124
  • 收稿日期:2021-08-11 修回日期:2021-12-24 出版日期:2022-05-11 发布日期:2022-05-02
  • 作者简介:安军海,男,1987年生,博士,主要从事地铁地下结构抗震方面的研究。
  • 基金资助:
    河北省自然科学基金资助项目(No. E2019208150);国家自然科学基金资助项目(No. 41877218);河北科技大学博士科研启动基金资助项目(No. 1181331)

A shaking table-based experimental study on seismic response of a shield- enlarge-dig type subway station structure

AN Jun-hai1, TAO Lian-jin2, JIANG Lu-zhen1   

  1. 1. School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China; 2. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing, 100124, China
  • Received:2021-08-11 Revised:2021-12-24 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the Natural Science Foundation of Hebei Province, China (E2019208150), the National Natural Science Foundation of China (41877218) and PhD Research Startup Foundation of Hebei University of Science and Technology (1181331).

摘要: 开展了近远场地震动作用下盾构扩挖地铁车站结构的振动台试验,分析了砂土模型地基的水平位移、地表变形、加速度、土压力反应及模型结构的加速度、应变等。结果表明:模型地基-结构体系的地震响应对中低频成分发育的地震波反应更为强烈;强震作用下地铁车站结构具有明显的空间效应,地下结构的存在将会改变模型地基表面变形的分布模式。小震时模型结构中柱的加速度反应自下而上逐渐增加,而大震时其反应规律变成先增大后减小;车站结构中板的加速度反应最大、底板次之、顶板最小;小震时,同等深度处模型结构的加速度反应与模型地基土的加速度反应大小相当,侧墙的动土压力自下而上逐渐增大;大震时,模型结构的加速度反应明显大于同深度处模型地基土的加速度反应,动土压力的最大值发生在扩挖隧道的拱肩和中间部位。基于震后模型结构的宏观现象和拉应变幅值,给出了砂土地基中盾构扩挖车站结构的地震损伤演化机制。

关键词: 振动台试验, 盾构法车站, 地震响应, 近远场地震动

Abstract: A shaking table experiment was conducted on a shield-enlarge-dig type subway station structure in sandy ground subjected to the near field earthquake and the far field earthquake. The horizontal displacement, surface deformation, acceleration, earth pressure response of the model ground and the acceleration and strain of the model structure of sandy soil are analyzed. The measured data substantiate that, the seismic response of soil-structure interaction system is more intense to the ground motion with low-and medium frequency. The subway station structure subjected to strong earthquake motions has obvious spatial effect, and the existence of underground structure will result in a change in the deformation distribution mode of ground surface. The acceleration response of columns of the model structure increases gradually from bottom to top as result of a low-intensity earthquake, while for the high- intensity earthquake, the acceleration response presents a law of increasing first and then decreasing. The acceleration response of the top plate is the biggest, followed by middle plate and bottom plate is the smallest under seismic action. And in addition to this, the acceleration response of the model structure is roughly equal to that of the model soil, and the dynamic earth pressure of the side wall increases gradually from bottom to top as result of the low-intensity earthquake; while for the high-intensity earthquake, the acceleration response of the model structure significantly surpasses that of the model soil, and the maximum value of earth pressure occurs at the arch shoulder and the middle part of the expanded tunnel. The earthquake damage mechanism of the shield-enlarge-dig type subway station structure is given based on the macroscopic phenomena of model structure after shock and the stretching strain amplitude under different ground motions.

Key words: shaking table test, shield-enlarge-dig type subway station, seismic response, near and far field earthquake

中图分类号: 

  • TU 470
[1] 冯忠居, 孟莹莹, 张聪, 赖德金, 朱继新, 林路宇, . 强震作用下液化场地群桩动力响应及p-y曲线[J]. 岩土力学, 2022, 43(5): 1289-1298.
[2] 郭明珠, 谷坤生, 张合, 孙海龙, 王晨, 刘晃, . 强震作用下含软弱夹层顺层岩质斜坡 动力响应规律试验研究[J]. 岩土力学, 2022, 43(5): 1306-1316.
[3] 张聪, 冯忠居, 孟莹莹, 关云辉, 陈慧芸, 王振, . 单桩与群桩基础动力时程响应差异振动台试验[J]. 岩土力学, 2022, 43(5): 1326-1334.
[4] 周泽华, 吕艳, 苏生瑞, 刁钰恒, 王祚鹏, 王剑昆, 赵辉, . 花岗岩质边坡地震动力响应及破坏特征 大型振动台试验研究[J]. 岩土力学, 2022, 43(4): 918-931.
[5] 陈世杰, 肖明, 王小威, 陈俊涛, . 陡倾角断层下地下洞室地震破坏特性数值分析[J]. 岩土力学, 2021, 42(9): 2600-2610.
[6] 何江, 肖世国, . 多级拼装悬臂式挡墙地震永久位移计算方法[J]. 岩土力学, 2021, 42(7): 1971-1982.
[7] 赖天文, 雷浩, 武志信, 吴红刚, . 玄武岩纤维增强复合材料在高边坡防护中的 振动台试验研究[J]. 岩土力学, 2021, 42(2): 390-400.
[8] 冯忠居, 张聪, 何静斌, 董芸秀, 袁枫斌, . 强震作用下嵌岩单桩时程响应振动台试验[J]. 岩土力学, 2021, 42(12): 3227-3237.
[9] 朱赛男, 李伟华, LEE Vincent W, 赵成刚, . 平面P1波斜入射下海底洞室地震响应解析分析[J]. 岩土力学, 2021, 42(1): 93-103.
[10] 徐超, 罗敏敏, 任非凡, 沈盼盼, 杨子凡. 加筋土柔性桥台复合结构抗震性能的试验研究[J]. 岩土力学, 2020, 41(S1): 179-186.
[11] 李福秀, 吴志坚, 严武建, 赵多银, . 基于振动台试验的黄土塬边斜坡 动力响应特性研究[J]. 岩土力学, 2020, 41(9): 2880-2890.
[12] 许成顺, 豆鹏飞, 杜修力, 陈苏, 韩俊艳, . 基于自由场大型振动台试验的饱和砂土 固-液相变特征研究[J]. 岩土力学, 2020, 41(7): 2189-2198.
[13] 杨长卫, 童心豪, 王栋, 谭信荣, 郭雪岩, 曹礼聪, . 地震作用下有砟轨道路基动力响应 规律振动台试验[J]. 岩土力学, 2020, 41(7): 2215-2223.
[14] 乔向进, 梁庆国, 曹小平, 王丽丽, . 桥隧相连体系隧道洞口段动力响应研究[J]. 岩土力学, 2020, 41(7): 2342-2348.
[15] 何静斌, 冯忠居, 董芸秀, 胡海波, 刘 闯, 郭穗柱, 张聪, 武敏, 王振, . 强震区桩−土−断层耦合作用下桩基动力响应[J]. 岩土力学, 2020, 41(7): 2389-2400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .