岩土力学 ›› 2022, Vol. 43 ›› Issue (5): 1364-1373.doi: 10.16285/j.rsm.2021.1300

• 数值分析 • 上一篇    下一篇

蠕滑错断-强震时序作用下跨活断裂 隧道变形破坏机制初步研究

崔臻1, 2,盛谦1,李建贺3,付兴伟4   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 长江勘测规划设计研究有限责任公司,湖北 武汉 430010;4. 中国长江三峡集团有限公司,北京 100038
  • 收稿日期:2021-08-06 修回日期:2021-12-20 出版日期:2022-05-11 发布日期:2022-05-02
  • 作者简介:崔臻,男,1986年生,博士,研究员,主要从事岩土工程静动力稳定性评价研究。
  • 基金资助:
    国家自然科学基金资助项目(No. 51779253,No. 52079133);深部岩土力学与地下工程国家重点实验室开放基金课题(No. SKLGDUEK1912);长江科学院开放研究基金资助项目(No. CKWV2019746/KY);暨南大学“重大工程灾害与控制”教育部重点实验室项目(No. 20200904002)

Deformation and failure of a tunnel subjected to the coupling effect of a quasi-static faulting and seismic impact

CUI Zhen1, 2, SHENG Qian1, LI Jian-he3, FU Xing-wei4   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing, 100049, China; 3. Changjiang Institute of Survey, Planning, Design and Research Co., Ltd., Wuhan, Hubei 430010, China; 4. China Three Gorges Corporation, Beijing 100038, China
  • Received:2021-08-06 Revised:2021-12-20 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51779253, 52079133), the Open Fund Project of state Key Laboratory of Geo-mechanics and Deep Underground Engineering (SKLGDUEK1912), the Open Research Foundation of Changjiang River Scientific Research Institute (CKWV2019746/KY) and the Project of Key Laboratory of Major Engineering Disasters and Control, Ministry of Education, Jinan University (20200904002).

摘要: 在以往对跨活断裂隧道变形破坏机制研究中,往往分别单独研究蠕滑错断与强震两种效应,忽略了在强震区两种效应往往同时对隧道具有威胁的可能性。基于此,讨论了蠕滑错断-强震时序作用对强震区隧道的影响。在室内试验数据的基础上,考虑相对错动条件下岩石-衬砌接触面、隧道混凝土衬砌材料的非线性弱化特征,研究隧道在先后发生活断裂错断与强震作用下的变形响应与破坏特征。引入了“柔性铰接”设计概念作为隧道的针对性工程措施,并验证了铰接设计的效果。开展了详细的参数研究,讨论了铰接设计中一些重要设计参数的影响。研究结果表明:(1)仅受到断层作用时,隧道的影响与破坏仅限于断层带部分,而隧道的其他部分基本保持相对完好;(2)隧道衬砌在蠕滑错断-强震时序作用下,隧道衬砌出现了明显的椭圆形变形和顶板沉降,导致隧道衬砌沿起拱线也出现明显的破坏现象。具有初始错断损伤的隧道在地震作用下会遭受更严重的破坏,破坏程度随初始错断距离的增加而增加;(3)铰接设计可以在时序组合作用下减少相对变形并提高隧道的安全程度,但铰接设计带来的安全程度的提高仅限于设防范围内;(4)建议设防长度的最佳范围为略大于断层宽度即可,节段长度越小,对改善隧道安全裕度越有利,而增加错断缝宽度几乎并不能提高隧道在蠕滑错断-强震时序组合下的表现。研究成果作为初步探索,可为进一步提高我国西部强震区地下工程的抗震抗错断能力提供一定的参考。

关键词: 隧道, 断层错动, 强震, 岩-混凝土相互作用, 柔性接头

Abstract: In previous studies on the mechanisms of deformation and failure of tunnels across active faults, the two effects of quasi-static faulting and seismic excitation were often studied separately, ignoring the possibility that the two effects are often threatening to the tunnel at the same time in the high seismic risk zone. In this study, sophisticated numerical methods and constitutive models were used to study the effect of combined fault rupture deformation and subsequent seismic excitation upon a tunnel. The weakening of the rock-tunnel interface under relative dislocation and degradation of the concrete material in the tunnel liner were considered. The deformation response and failure mechanism of the tunnel subjected to combined fault rupture deformation and subsequent seismic excitation were investigated. Relative deformation time histories, plastic strain, tensile strain of the tunnel were studied. And the performance of “joint” design was numerically verified, followed by a detailed parameter study that aimed to provide deep insight into the design factors of the technique of “flexible jointing”. The influences of some important factors were investigated, such as the range of the joints, length of the segments, and infill material properties. The results indicated that: (1) When solely affected by the faulting, the influence and damage to the tunnel are limited within the fault zone, while the other parts of the tunnel remain relatively intact. (2) Under the combined fault rupture deformation and subsequent seismic excitation, notable ovaling deformation and roof settlement would occur in the tunnel liner, also the tunnel spring line would suffer significate damage. Tunnels with initial faulting induced damage would suffer more damage under the action of earthquakes, and the damage degree increases with the increasing initial faulting distance. (3) The flexible joint design could decrease the tunnel’s relative deformation under the combined effect and enhance the stability of the tunnel. However, it should be noted that this benefit would be limited within the fortification range. (4) The suggested range of the fortification would be slightly larger than the width of the fault. A smaller segment length is preferred to improve the tunnel’s stability. And it seems that the width of the joint is irrelevant with the performance of the tunnel under the combined effect. As a preliminary exploration, current research results provide a certain reference for further improving the seismic resistance and fault resistance of underground engineering in strong earthquake areas in western China.

Key words: tunnel, quasi-static faulting, strong earthquake, rock-concrete interaction, joint design

中图分类号: 

  • TU 452
[1] 张治国, 沃巍, 朱正国, 韩凯航, 孙苗苗, . 考虑衬砌截面协调变形约束的既有隧道受盾构下穿施工影响的Fourier能量变分解[J]. 岩土力学, 2024, 45(5): 1397-1411.
[2] 陶志刚, 丰于翔, 赵易, 张晓宇, 何满潮, 雷啸天, . 穿断层隧道NPR锚索支护体系抗震特性振动台试验研究[J]. 岩土力学, 2024, 45(4): 939-949.
[3] 王滢, 赵彩清, 王海萍, . 隧道内爆炸荷载作用下衬砌及周围非饱和土的动力响应解答[J]. 岩土力学, 2024, 45(4): 1026-1038.
[4] 周小雄, 肖禹航, 龚秋明, 刘晓丽, 刘俊豪, 刘东鑫. 基于图像分析的TBM掘进参数与岩碴特征关系研究[J]. 岩土力学, 2024, 45(4): 1142-1153.
[5] 汤华, 姜成业, 邓琴, 毕钛俊, 秦雨樵, . 浅埋无中导洞连拱隧道先行洞衬砌承担围岩荷载确定方法[J]. 岩土力学, 2024, 45(4): 1170-1180.
[6] 张治国, 罗杰, 朱正国, PAN Y T, 孙苗苗, . 基于极限分析上限法的地震作用下分层地基 盾构隧道开挖面稳定性研究[J]. 岩土力学, 2024, 45(4): 1201-1213.
[7] 孙锐, 阳军生, 张庆贺, 杨峰, . 基于网格自适应加密策略的隧道稳定性三维极限分析下限有限元法研究[J]. 岩土力学, 2024, 45(4): 1256-1264.
[8] 毕钛俊, 邓琴, 汤华, 姜成业, 秦雨樵, . 基于复变函数理论的无中导连拱隧道应力与位移解析解[J]. 岩土力学, 2024, 45(3): 777-787.
[9] 潘秋景, 吴洪涛, 张子龙, 宋克志, . 基于多域物理信息神经网络的复合地层隧道掘进地表沉降预测[J]. 岩土力学, 2024, 45(2): 539-551.
[10] 冯海洲, 蒋关鲁, 何梓雷, 郭玉丰, 胡金山, 李杰, 袁胜洋, . 预应力锚索桩板墙加固隧道洞口边坡的动力响应特性研究[J]. 岩土力学, 2023, 44(S1): 50-62.
[11] 周晓敏, 马文著, 张松, 宋宜祥, 刘勇, 和晓楠, . 渗流条件下隧道锚注复合围岩体的解析方法[J]. 岩土力学, 2023, 44(S1): 206-220.
[12] 苟永平, 叶琼瑶, 韦立德, 司家琛, . 央达隧道掌子面前方边坡地表开裂研究[J]. 岩土力学, 2023, 44(S1): 548-560.
[13] 孙闯, 兰思琦, 陶琦, 关喜彬, 韩希平, . 深埋隧道软弱围岩拱顶三维渐进性塌落机制上限分析[J]. 岩土力学, 2023, 44(9): 2471-2484.
[14] 卢钦武, 关振长, 林林, 吴淑婧, 宋德杰. 基于静力推覆试验的山岭隧道衬砌-地层相互作用机制研究[J]. 岩土力学, 2023, 44(8): 2318-2326.
[15] 李翔, 王靖童, 魏恒. 多失效模式下基于区间非概率的岩质隧道稳定可靠度分析[J]. 岩土力学, 2023, 44(8): 2409-2418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[2] 陈红江,李夕兵,刘爱华. 矿井突水水源判别的多组逐步Bayes判别方法研究[J]. , 2009, 30(12): 3655 -3659 .
[3] 和法国,谌文武,韩文峰,张景科. 高分子材料SH固沙性能与微结构相关性研究[J]. , 2009, 30(12): 3803 -3807 .
[4] 雷永生. 西安地铁二号线下穿城墙及钟楼保护措施研究[J]. , 2010, 31(1): 223 -228 .
[5] 肖 忠,王元战,及春宁,黄泰坤,单 旭. 波浪作用下加固软基上大圆筒结构稳定性分析[J]. , 2010, 31(8): 2648 -2654 .
[6] 柴 波,殷坤龙,陈丽霞,李远耀. 岩体结构控制下的斜坡变形特征[J]. , 2009, 30(2): 521 -525 .
[7] 赵洪波,茹忠亮,张士科. SVM在地下工程可靠性分析中的应用[J]. , 2009, 30(2): 526 -530 .
[8] 徐 扬,高 谦,李 欣,李俊华,贾云喜. 土石混合体渗透性现场试坑试验研究[J]. , 2009, 30(3): 855 -858 .
[9] 章定文,刘松玉,顾沉颖. 各向异性初始应力状态下圆柱孔扩张理论弹塑性分析[J]. , 2009, 30(6): 1631 -1634 .
[10] 邓华锋,张国栋,王乐华,邓成进,郭 靖,鲁 涛. 导流隧洞开挖施工的爆破振动监测与分析[J]. , 2011, 32(3): 855 -860 .