岩土力学 ›› 2022, Vol. 43 ›› Issue (5): 1164-1174.doi: 10.16285/j.rsm.2021.1355

• 基础理论与实验研究 • 上一篇    下一篇

干湿循环下地聚合物固化黄土强度 劣化机制与模型研究

陈锐,张星,郝若愚,包卫星   

  1. 长安大学 公路学院,陕西 西安 710064
  • 收稿日期:2021-08-16 修回日期:2021-10-22 出版日期:2022-05-11 发布日期:2022-04-30
  • 作者简介:陈锐,男,1987年生,博士,副教授,主要从事特殊土力学特性和地基处理研究。
  • 基金资助:
    国家自然科学基金项目(No. 51708041);陕西省自然科学基金项目(No. 2018JQ5001);长安大学中央高校基本科研业务费专项资金资助(No. 300102210213)

Shear strength deterioration of geopolymer stabilized loess under wet-dry cycles: mechanisms and prediction model

CHEN Rui, ZHANG Xing, HAO Ruo-yu, BAO Wei-xing   

  1. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China
  • Received:2021-08-16 Revised:2021-10-22 Online:2022-05-11 Published:2022-04-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51708041), the Natural Science Foundation of Shaanxi Province (2018JQ5001) and the Fundamental Research Funds for the Central Universities, Chang’an University (300102210213).

摘要: 采用地聚合物对黄土进行固化处理,通过三轴试验研究了干湿循环下不同掺量地聚合物固化黄土抗剪强度的劣化规律,提出了固化土强度劣化的经验公式。结合X射线衍射(X-ray diffraction,简称XRD)、电镜扫描(scanning electron microscopy,简称SEM)和压汞(mercury intrusion porosimetry,简称MIP)试验,分析了水化产物、固化土微观形貌演化与孔隙分布,探讨了地聚合物固化黄土的劣化机制。三轴试验结果表明:相较于素土,固化土的抗剪强度随地聚合物掺量增加而显著提高,黏聚力及内摩擦角最高提升260%和43%;固化土抗剪强度与孔隙率 对地聚合物体积含量 的比值 呈幂函数关系;地聚合物可有效提高固化土的抗干湿耐久性,在9次干湿循环后10%和15%的地聚合物固化土抗剪强度仍保持初始强度的75%以上,但5%的地聚合物固化土在干湿作用下劣化明显,经历9次干湿循环后其强度接近素土;干湿循环对固化土峰值偏应力与黏聚力影响较大,对内摩擦角影响较小。综合考虑地聚合物掺量、围压及干湿循环次数的影响,提出了地聚合物固化土强度劣化经验公式并验证了其准确性。XRD、SEM和MIP试验结果表明:地聚合物的主要水化产物是水化硅酸钙(calcium silicate hydrate,简称CSH)和水化硅铝酸钙(calcium aluminosilicate hydrate,简称CASH),其胶结和充填作用增强土体黏聚力并使土体形成致密的微观结构,从而提高固化土的强度;干湿循环使得土体孔隙扩张并产生新裂隙,导致土颗粒间的胶结破坏,进而劣化固化土宏观强度。

关键词: 黄土, 地聚合物, 干湿循环, 强度劣化, 固化机制, 预测模型

Abstract: The loess was stabilized using geopolymer (GP). Triaxial compression tests were conducted on stabilized loess with varied GP contents subjected to wet-dry cycles. The degradation law of the shear strength of the stabilized loess after varied wet-dry cycles was evaluated and an empirical model for predicting the shear strength was proposed. The chemical composition of the hydration products, the microstructure and pore size distribution of stabilized loess were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) tests. The degradation mechanisms of GP stabilized loess under wet-dry cycles were discussed based on the experimental results. The experimental results show that compared with untreated soil, the shear strength of stabilized soils is significantly improved with the increasing GP content, i.e. the cohesion and internal friction angle increase by 260% and 43%, respectively. The shear strength of stabilized loess decreases with the increasing ratio of porosity to GP volumetric fraction ( ) in a power function. It indicates that GP stabilization can remarkably improve the durability of loess under wet-dry cycles. The stabilized loess with 10% and 15% GP can maintain over 75% of their original shear strength, but those with 5% GP shows evident deterioration in shear strength after nine wet-dry cycles. The wet-dry cycling has greater impact on the degradation of peak deviatoric stress and cohesion than that of internal friction angle. An empirical model was proposed and validated for predicting the degradation in shear strength of the GP stabilized loess under wet-dry cycles, considering influence of the GP content, confining pressure and the number of wet-dry cycle. The experimental results of XRD, SEM and MIP show that the main hydration products of GP are calcium silicate hydrate (CSH) and calcium aluminosilicate hydrate (CASH), which fill the soil pores and enhance the bonding between soil particles. Due to this reason, a denser microstructure develops and the cohesion of the stabilized loess increases, which consequently improves the shear strength of the GP stabilized loesses. Moreover, the wet-dry cycle results in the expansion of soil pores and the formation of new fissures, which destructs the bonding between soil particles and reduces the shear strength of the stabilized loess.

Key words: loess, geopolymer, wet-dry cycle, shear strength deterioration, stabilizing mechanism, prediction model

中图分类号: 

  • TU 416.1
[1] 康孝森, 廖红建, 黄强兵, 霍秉尧, . 结构性黄土的临界压力比及其边界面 塑性本构模型预测[J]. 岩土力学, 2022, 43(6): 1469-1480.
[2] 陈瑞敏, 简文彬, 张小芳, 方泽化, . CSFG-FR协同作用改良淤泥固化土性能试验研究[J]. 岩土力学, 2022, 43(4): 1020-1030.
[3] 仉文岗, 顾鑫, 刘汉龙, 张青, 王林, 王鲁琦, . 基于贝叶斯更新的非饱和土坡参数概率 反演及变形预测[J]. 岩土力学, 2022, 43(4): 1112-1122.
[4] 王海曼, 倪万魁. 不同干密度压实黄土的饱和/非饱和渗透 系数预测模型[J]. 岩土力学, 2022, 43(3): 729-736.
[5] 侯乐乐, 翁效林, 李 林, 周容名, . 考虑含水率影响的结构性黄土临界状态模型[J]. 岩土力学, 2022, 43(3): 737-748.
[6] 张茜, 叶为民, 刘樟荣, 王琼, 陈永贵, . 基于生物诱导碳酸钙沉淀的土体固化研究进展[J]. 岩土力学, 2022, 43(2): 345-357.
[7] 高常辉, 杜广印, 刘松玉, 庄仲旬, 杨泳, 何欢, . 深层振动密实对湿陷性黄土层水平应力变化的影响[J]. 岩土力学, 2022, 43(2): 519-527.
[8] 许健, 武智鹏, 陈辉, . 干湿循环效应下玄武岩纤维加筋黄土 三轴剪切力学行为研究[J]. 岩土力学, 2022, 43(1): 28-36.
[9] 江帅, 朱勇, 栗青, 周辉, 涂洪亮, 杨凡杰, . 隧道开挖地表沉降动态预测及影响因素分析[J]. 岩土力学, 2022, 43(1): 195-204.
[10] 李燕, 李同录, 侯晓坤, 李华, 张杰, . 用孔隙分布曲线预测压实黄土非饱和渗透曲 线及其适用范围的探讨[J]. 岩土力学, 2021, 42(9): 2395-2404.
[11] 葛苗苗, 李宁, 盛岱超, 朱才辉, PINEDA Jubert, . 水力耦合作用下非饱和压实黄土 细观变形机制试验研究[J]. 岩土力学, 2021, 42(9): 2437-2448.
[12] 赵志强, 戴福初, 闵弘, 谭晔, . 原状黄土−古土壤中水分入渗过程研究[J]. 岩土力学, 2021, 42(9): 2611-2621.
[13] 周恒宇, 王修山, 胡星星, 熊志奇, 张小元, . 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42(8): 2089-2098.
[14] 姜彤, 翟天雅, 张俊然, 赵金玓, 王俪锦, 宋陈雨, 潘旭威. 基于粒子图像测速技术的黄土径向劈裂试验研究[J]. 岩土力学, 2021, 42(8): 2120-2126.
[15] 刘越, 陈东霞, 王晖, 于佳静, . 干湿循环下考虑裂隙发育的残积土边坡响应分析[J]. 岩土力学, 2021, 42(7): 1933-1943.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .