岩土力学 ›› 2022, Vol. 43 ›› Issue (S2): 214-222.doi: 10.16285/j.rsm.2021.1384
肖涵,董超强,章荣军,陆展,郑俊杰
XIAO Han, DONG Chao-qiang, ZHANG Rong-jun, LU Zhan, ZHENG Jun-jie
摘要: 改性淤泥固化土应用于填方工程既能弥补砂石填料供应短缺的困境,还能解决大宗疏浚淤泥的弃置难题。但当淤泥含水率超高(>300%)时,纯水泥固化法处理效果极差,而采用絮凝调理联合化学固化的理化复合法可有效解决此类问题。鉴于生石灰具有絮凝和固化双重功效,采用生石灰替代部分水泥可能会进一步提高淤泥浆的理化复合法处理效率。通过十字板剪切试验研究了生石灰替代比对高含水率淤泥浆理化复合法处理效率的影响规律,并通过X射线衍射(XRD)和场发射扫描电镜(FESEM)试验从微观层面揭示了其固化机制。结果表明:生石灰对淤泥浆理化复合法处理效率会产生较大影响,且存在一个最优生石灰替代比,在最优替代比条件下生石灰能显著发挥絮凝和固化双重功效,并有效提高处理后淤泥的早期和晚期强度;从微观试验分析,最优替代比下处理后的淤泥样生成的CSH/CAH/CASH凝胶和钙矾石等水化产物数量最多,孔隙间隙也最小。因此,实际工程中运用理化复合法处理高含水率淤泥浆时,可采用生石灰替代部分水泥以提高处理效率。
中图分类号:
[1] | 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66. |
[2] | 张磊, 田苗苗, 卢硕, 李明雪, 李菁华, . 不同含水率煤体液氮致裂渗透率变化规律 及应力敏感性分析[J]. 岩土力学, 2022, 43(S1): 107-116. |
[3] | 刘杰, 崔瑜瑜, 卢正, 姚海林, . 分散土分散性影响因素及其判别方法初探[J]. 岩土力学, 2022, 43(S1): 237-244. |
[4] | 潘振辉, 肖涛, 李萍, . 压实度与制样含水率对压实黄土微结 构及水力特性的影响[J]. 岩土力学, 2022, 43(S1): 357-366. |
[5] | 欧孝夺, 甘雨, 潘鑫, 江杰, 覃英宏, . 重塑膨胀岩热传导性能及影响因素试验研究[J]. 岩土力学, 2022, 43(S1): 367-374. |
[6] | 郑威威, 洪义, 王立忠, . 含气软黏土的不排水抗剪强度计算模型[J]. 岩土力学, 2022, 43(8): 2233-2240. |
[7] | 张婵青, 何凤飞, 姜顺航, 曾子真, 熊峰, 陈江, . 土体含水率监测的移动点热源法研究[J]. 岩土力学, 2022, 43(7): 2025-2034. |
[8] | 陈锐, 张星, 郝若愚, 包卫星. 干湿循环下地聚合物固化黄土强度 劣化机制与模型研究[J]. 岩土力学, 2022, 43(5): 1164-1174. |
[9] | 金宗川, 王雪晴, 乌效鸣, 彭赟, . 土壤热参数及其影响因素测试分析[J]. 岩土力学, 2022, 43(5): 1335-1340. |
[10] | 陈瑞敏, 简文彬, 张小芳, 方泽化, . CSFG-FR协同作用改良淤泥固化土性能试验研究[J]. 岩土力学, 2022, 43(4): 1020-1030. |
[11] | 郑文红, 施天威, 潘一山, 罗浩, 吕祥锋, . 含水率对岩石电荷感应信号影响规律研究[J]. 岩土力学, 2022, 43(3): 659-668. |
[12] | 侯乐乐, 翁效林, 李 林, 周容名, . 考虑含水率影响的结构性黄土临界状态模型[J]. 岩土力学, 2022, 43(3): 737-748. |
[13] | 蔡光华, 周伊帆, 潘智生, 李江山, . 生石灰激发GGBS固化高含水率香港海相 沉积物的物理力学性质研究[J]. 岩土力学, 2022, 43(2): 327-336. |
[14] | 张茜, 叶为民, 刘樟荣, 王琼, 陈永贵, . 基于生物诱导碳酸钙沉淀的土体固化研究进展[J]. 岩土力学, 2022, 43(2): 345-357. |
[15] | 李长辉, 武航, 程国勇, 陈宇, 金敏, 常雷, . 不同排水板真空预压软土加固对比试验研究[J]. 岩土力学, 2022, 43(10): 2819-2827. |
|