岩土力学 ›› 2022, Vol. 43 ›› Issue (5): 1289-1298.doi: 10.16285/j.rsm.2021.1447

• 基础理论与实验研究 • 上一篇    下一篇

强震作用下液化场地群桩动力响应及p-y曲线

冯忠居1,孟莹莹1,张聪1,赖德金2,朱继新2,林路宇2   

  1. 1. 长安大学 公路学院,陕西 西安 710064;2 厦门路桥工程投资发展有限公司,福建 厦门 361026
  • 收稿日期:2021-08-27 修回日期:2022-01-13 出版日期:2022-05-11 发布日期:2022-05-02
  • 通讯作者: 孟莹莹,女,1995年生,硕士研究生,主要从事基础工程、岩土工程方面的研究。E-mail: 369927231@qq.com E-mail:ysf@gl.chd.edu.cn
  • 作者简介:冯忠居,男,1965年生,博士,教授,博士生导师,主要从事桩基础工程、岩土工程方面的研究。
  • 基金资助:
    国家自然科学基金项目(No. 51708040);海南省交通科技项目(No. HNZXY2015-045R)。

Dynamic response and p-y curve of pile groups in liquefaction site under strong earthquake

FENG Zhong-ju1, MENG Ying-ying1, ZHANG Cong1, LAI De-jin2, ZHU Ji-xin2, LIN Lu-yu2   

  1. 1. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China; 2. Xiamen Road and Bridge Engineering Investment Development Co., Ltd., Xiamen, Fujian 361026, China
  • Received:2021-08-27 Revised:2022-01-13 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51708040) and the Hainan Provincial Transportation Science and Technology Project (HNZXY2015-045R).

摘要: 为研究液化场地中群桩在强震作用下的动力响应特征及桩侧土抗力-桩土相对位移(p-y)曲线规律,依托海文大桥实体工程,基于振动台模型试验,开展了0.15g~0.35g地震动作用饱和粉细砂土层不同埋置深度下的砂土孔压比、桩身弯矩及p-y曲线动力响应研究。结果表明:地震动强度达到0.25g时,不同埋置深度下的饱和粉细砂土层孔压比均大于0.8,产生液化现象,且随埋置深度增加,孔压比增长时刻明显滞后;不同埋置深度下,桩身弯矩最大值均位于液化土层和非液化土层分界面处;同一埋置深度时,随地震动强度的增大,p-y曲线所包围的面积逐渐增大,其整体斜率逐渐变小,说明桩-土相互作用动力耗能逐渐增大,桩周土体刚度逐渐减小;随埋置深度增加,p-y曲线所包围的面积逐渐减小,其整体斜率逐渐增大,说明桩-土相互作用动力耗能逐渐减小,桩周土体刚度逐渐增大。因此,液化场地桥梁群桩抗震设计时,应综合考虑液化土层与桩基础的相互位置关系,确保桩基础在液化土层与非液化土层分界处的抗弯承载能力。

关键词: 桥梁桩基, 强震作用, 振动台试验, 液化场地, 动力响应, p-y曲线

Abstract: To investigate the dynamic response characteristics of pile groups in liquefaction sites under strong earthquakes as well as the laws between soil resistance and pile-soil relative displacement (p-y), a shaking table model test associated with the project of Haiwen Bridge was conducted. The dynamic responses of sand pore pressure ratio, pile bending moment and p-y curve under different embedded depths of saturated silty sand encountered by 0.15g-0.35g seismic action were studied. The results show that when the seismic intensity reaches 0.25g, the pore pressure ratio of saturated silty sand under different embedded depths is larger than 0.8 and the liquefaction phenomenon occurs. As the embedded depth increases, the increased time of the pore pressure ratio is obviously delayed. At different embedded depths, the maximum bending moment of the pile appears at the interface between liquefied soil layer and the non-liquefied soil layer. At the same embedded depth, the area surrounded by the p-y curve increases gradually with seismic intensity, and its overall slope decreases, indicating that the dynamic energy dissipation of pile-soil interaction increases gradually and that the stiffness of soil around the pile decreases gradually. As the embedded depth increases, the area enclosed by the p-y curve gradually decreases and its overall slope gradually increases, indicating that the dynamic energy dissipation of pile-soil interaction gradually decreases and the soil stiffness around the pile gradually increases. Therefore, when performing the seismic design of bridge pile groups at liquefied sites, the relationship between liquefied soil layer and pile foundation should be considered comprehensively to ensure the bending bearing capacity of the pile foundations at the boundary between liquefied and non-liquefied soil layers.

Key words: bridge pile foundation, strong earthquake action, shaking table test, liquefaction site, dynamic response, p-y curve

中图分类号: 

  • TU 473
[1] 张思宇, 李兆焱, 袁晓铭, . 国内外静力触探液化判别方法对比检验[J]. 岩土力学, 2024, 45(5): 1517-1526.
[2] 陶志刚, 丰于翔, 赵易, 张晓宇, 何满潮, 雷啸天, . 穿断层隧道NPR锚索支护体系抗震特性振动台试验研究[J]. 岩土力学, 2024, 45(4): 939-949.
[3] 王滢, 赵彩清, 王海萍, . 隧道内爆炸荷载作用下衬砌及周围非饱和土的动力响应解答[J]. 岩土力学, 2024, 45(4): 1026-1038.
[4] 王通, 刘先峰, 袁胜洋, 蒋关鲁, 胡金山, 邵珠杰, 田士军, . 顺倾及反倾层状碎裂结构斜坡地震反应的大型振动台试验研究[J]. 岩土力学, 2024, 45(2): 489-501.
[5] 吴小锋, 张笛, 李星, 汪玉冰, 文凯, . 可液化场地桩基震后水平变形预测模型研究[J]. 岩土力学, 2024, 45(1): 77-86.
[6] 王瑞, 胡志平. 铁路路基动力响应的2.5D有限元方法研究现状及展望[J]. 岩土力学, 2024, 45(1): 284-301.
[7] 冯海洲, 蒋关鲁, 何梓雷, 郭玉丰, 胡金山, 李杰, 袁胜洋, . 预应力锚索桩板墙加固隧道洞口边坡的动力响应特性研究[J]. 岩土力学, 2023, 44(S1): 50-62.
[8] 李小信, 何超, 周顺华, 李晖, . 具有不规则界面的层状地基三维动力响应的薄层法[J]. 岩土力学, 2023, 44(S1): 655-668.
[9] 王志颖, 郭明珠, 曾金艳, 王晨, 刘晃. 地震作用下含软弱夹层顺层岩质斜坡 动力响应的试验研究[J]. 岩土力学, 2023, 44(9): 2566-2578.
[10] 王晓磊, 刘理腾, 刘润, 刘历波, 董林, 任海. 地震历史对各深度土体抗液化性影响的振动台试验研究[J]. 岩土力学, 2023, 44(9): 2657-2666.
[11] 贾科敏, 许成顺, 杜修力, 张小玲, 宋佳, 苏卓林, . 可液化倾斜场地的侧向扩展机制分析[J]. 岩土力学, 2023, 44(6): 1837-1848.
[12] 张硕成, 陈文化. 考虑不均匀冻胀土体-衬砌隧道在寒区的振动响应[J]. 岩土力学, 2023, 44(5): 1467-1476.
[13] 王丽艳, 吉文炜, 陶云翔, 唐跃, 王炳辉, 蔡晓光, 张雷, . 格栅条带式加筋废旧轮胎胎面挡土墙 抗震性能试验研究[J]. 岩土力学, 2023, 44(4): 931-940.
[14] 张聪, 冯忠居, 王富春, 孔元元, 王溪清, 马晓谦, . 强震区软弱土层差异厚度下单桩动力响应振动台试验[J]. 岩土力学, 2023, 44(4): 1100-1110.
[15] 刘新荣, 郭雪岩, 许彬, 周小涵, 曾夕, 谢应坤, 王䶮, . 含消落带劣化岩体的危岩边坡动力累积损伤机制研究[J]. 岩土力学, 2023, 44(3): 637-648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 况雨春,伍开松,杨迎新,马德坤. 三牙轮钻头破岩过程计算机仿真模型[J]. , 2009, 30(S1): 235 -238 .
[2] 鄢治华,刘志伟,刘厚健. 黄河阶地上某电厂高边坡参数选取及其工程治理[J]. , 2009, 30(S2): 465 -468 .
[3] 许振浩 ,李术才 ,李利平 ,侯建刚 ,隋 斌 ,石少帅. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. , 2011, 32(6): 1757 -1766 .
[4] 江 权 ,冯夏庭 ,周 辉 ,赵 阳 ,徐鼎平 ,黄 可 ,江亚丽. 层间错动带的强度参数取值探讨[J]. , 2011, 32(11): 3379 -3386 .
[5] 温世清 ,刘汉龙 ,陈育民. 浆固碎石桩单桩荷载传递特性研究[J]. , 2011, 32(12): 3637 -3641 .
[6] 李顺群 ,高凌霞 ,柴寿喜. 冻土力学性质影响因素的显著性和交互作用研究[J]. , 2012, 33(4): 1173 -1177 .
[7] 钟 声 ,王川婴 ,吴立新 ,唐新建 ,王清远. 点状不良地质体钻孔雷达响应特征 ——围岩及充填效应正演分析[J]. , 2012, 33(4): 1191 -1195 .
[8] 孟 振,陈锦剑,王建华,尹振宇. 砂土中螺纹桩承载特性的模型试验研究[J]. , 2012, 33(S1): 141 -145 .
[9] 罗 刚 ,胡卸文 ,顾成壮 . 强震作用下顺层岩质斜坡动力失稳机制及启动速度研究[J]. , 2013, 34(2): 483 -490 .
[10] 付晓东,盛 谦,张勇慧. 水电站地下洞室群分步开挖的非连续变形分析[J]. , 2013, 34(2): 568 -574 .