岩土力学 ›› 2022, Vol. 43 ›› Issue (5): 1289-1298.doi: 10.16285/j.rsm.2021.1447

• 基础理论与实验研究 • 上一篇    下一篇

强震作用下液化场地群桩动力响应及p-y曲线

冯忠居1,孟莹莹1,张聪1,赖德金2,朱继新2,林路宇2   

  1. 1. 长安大学 公路学院,陕西 西安 710064;2 厦门路桥工程投资发展有限公司,福建 厦门 361026
  • 收稿日期:2021-08-27 修回日期:2022-01-13 出版日期:2022-05-11 发布日期:2022-05-02
  • 通讯作者: 孟莹莹,女,1995年生,硕士研究生,主要从事基础工程、岩土工程方面的研究。E-mail: 369927231@qq.com E-mail:ysf@gl.chd.edu.cn
  • 作者简介:冯忠居,男,1965年生,博士,教授,博士生导师,主要从事桩基础工程、岩土工程方面的研究。
  • 基金资助:
    国家自然科学基金项目(No. 51708040);海南省交通科技项目(No. HNZXY2015-045R)。

Dynamic response and p-y curve of pile groups in liquefaction site under strong earthquake

FENG Zhong-ju1, MENG Ying-ying1, ZHANG Cong1, LAI De-jin2, ZHU Ji-xin2, LIN Lu-yu2   

  1. 1. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China; 2. Xiamen Road and Bridge Engineering Investment Development Co., Ltd., Xiamen, Fujian 361026, China
  • Received:2021-08-27 Revised:2022-01-13 Online:2022-05-11 Published:2022-05-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51708040) and the Hainan Provincial Transportation Science and Technology Project (HNZXY2015-045R).

摘要: 为研究液化场地中群桩在强震作用下的动力响应特征及桩侧土抗力-桩土相对位移(p-y)曲线规律,依托海文大桥实体工程,基于振动台模型试验,开展了0.15g~0.35g地震动作用饱和粉细砂土层不同埋置深度下的砂土孔压比、桩身弯矩及p-y曲线动力响应研究。结果表明:地震动强度达到0.25g时,不同埋置深度下的饱和粉细砂土层孔压比均大于0.8,产生液化现象,且随埋置深度增加,孔压比增长时刻明显滞后;不同埋置深度下,桩身弯矩最大值均位于液化土层和非液化土层分界面处;同一埋置深度时,随地震动强度的增大,p-y曲线所包围的面积逐渐增大,其整体斜率逐渐变小,说明桩-土相互作用动力耗能逐渐增大,桩周土体刚度逐渐减小;随埋置深度增加,p-y曲线所包围的面积逐渐减小,其整体斜率逐渐增大,说明桩-土相互作用动力耗能逐渐减小,桩周土体刚度逐渐增大。因此,液化场地桥梁群桩抗震设计时,应综合考虑液化土层与桩基础的相互位置关系,确保桩基础在液化土层与非液化土层分界处的抗弯承载能力。

关键词: 桥梁桩基, 强震作用, 振动台试验, 液化场地, 动力响应, p-y曲线

Abstract: To investigate the dynamic response characteristics of pile groups in liquefaction sites under strong earthquakes as well as the laws between soil resistance and pile-soil relative displacement (p-y), a shaking table model test associated with the project of Haiwen Bridge was conducted. The dynamic responses of sand pore pressure ratio, pile bending moment and p-y curve under different embedded depths of saturated silty sand encountered by 0.15g-0.35g seismic action were studied. The results show that when the seismic intensity reaches 0.25g, the pore pressure ratio of saturated silty sand under different embedded depths is larger than 0.8 and the liquefaction phenomenon occurs. As the embedded depth increases, the increased time of the pore pressure ratio is obviously delayed. At different embedded depths, the maximum bending moment of the pile appears at the interface between liquefied soil layer and the non-liquefied soil layer. At the same embedded depth, the area surrounded by the p-y curve increases gradually with seismic intensity, and its overall slope decreases, indicating that the dynamic energy dissipation of pile-soil interaction increases gradually and that the stiffness of soil around the pile decreases gradually. As the embedded depth increases, the area enclosed by the p-y curve gradually decreases and its overall slope gradually increases, indicating that the dynamic energy dissipation of pile-soil interaction gradually decreases and the soil stiffness around the pile gradually increases. Therefore, when performing the seismic design of bridge pile groups at liquefied sites, the relationship between liquefied soil layer and pile foundation should be considered comprehensively to ensure the bending bearing capacity of the pile foundations at the boundary between liquefied and non-liquefied soil layers.

Key words: bridge pile foundation, strong earthquake action, shaking table test, liquefaction site, dynamic response, p-y curve

中图分类号: 

  • TU 473
[1] 郑长杰, 何育泽, 丁选明, 栾鲁宝, 陈业伟, . 下卧基岩黏弹性地基上刚性条形基础 竖向振动响应研究[J]. 岩土力学, 2022, 43(6): 1434-1440.
[2] 安军海, 陶连金, 蒋录珍, . 盾构扩挖地铁车站结构地震反应特性振动台试验[J]. 岩土力学, 2022, 43(5): 1277-1288.
[3] 郭明珠, 谷坤生, 张合, 孙海龙, 王晨, 刘晃, . 强震作用下含软弱夹层顺层岩质斜坡 动力响应规律试验研究[J]. 岩土力学, 2022, 43(5): 1306-1316.
[4] 张聪, 冯忠居, 孟莹莹, 关云辉, 陈慧芸, 王振, . 单桩与群桩基础动力时程响应差异振动台试验[J]. 岩土力学, 2022, 43(5): 1326-1334.
[5] 周泽华, 吕艳, 苏生瑞, 刁钰恒, 王祚鹏, 王剑昆, 赵辉, . 花岗岩质边坡地震动力响应及破坏特征 大型振动台试验研究[J]. 岩土力学, 2022, 43(4): 918-931.
[6] 赵爽, 余俊, 刘新源, 胡钟伟. 悬臂式刚性墙动力响应解析研究[J]. 岩土力学, 2022, 43(1): 152-159.
[7] 张治国, 沈安鑫, 张成平, PAN Y. T., 吴钟腾, . 基于非线性Pasternak地基模型的海床悬链线立管触地段初始侵彻静平衡解析解[J]. 岩土力学, 2021, 42(9): 2355-2374.
[8] 何江, 肖世国, . 多级拼装悬臂式挡墙地震永久位移计算方法[J]. 岩土力学, 2021, 42(7): 1971-1982.
[9] 饶佩森, 李丹, 孟庆山, 王新志, 付金鑫, 雷学文, . 循环荷载作用下钙质砂地基土压力分布特征研究[J]. 岩土力学, 2021, 42(6): 1579-1586.
[10] 赖天文, 雷浩, 武志信, 吴红刚, . 玄武岩纤维增强复合材料在高边坡防护中的 振动台试验研究[J]. 岩土力学, 2021, 42(2): 390-400.
[11] 冯忠居, 张聪, 何静斌, 董芸秀, 袁枫斌, . 强震作用下嵌岩单桩时程响应振动台试验[J]. 岩土力学, 2021, 42(12): 3227-3237.
[12] 窦金熙, 张贵金, 张熙, 范伟中, 宋伟, . 砂质土体脉动注浆浆−土耦合动力响应分析[J]. 岩土力学, 2021, 42(12): 3315-3327.
[13] 张玲, 欧强, 赵明华, 丁选明, 刘健飞, . 移动荷载下土工加筋路堤动力响应特性数值分析[J]. 岩土力学, 2021, 42(10): 2865-2874.
[14] 徐超, 罗敏敏, 任非凡, 沈盼盼, 杨子凡. 加筋土柔性桥台复合结构抗震性能的试验研究[J]. 岩土力学, 2020, 41(S1): 179-186.
[15] 李福秀, 吴志坚, 严武建, 赵多银, . 基于振动台试验的黄土塬边斜坡 动力响应特性研究[J]. 岩土力学, 2020, 41(9): 2880-2890.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .