岩土力学 ›› 2022, Vol. 43 ›› Issue (6): 1635-1659.doi: 10.16285/j.rsm.2021.1727

• 数值分析 • 上一篇    下一篇

Stokes二阶波作用下斜坡海床中盾构隧道周围 砂土渗流压力响应分析

张治国1, 2, 3, 4, 5,叶铜1,张成平4,PAN Y T5,吴钟腾2   

  1. 1. 上海理工大学 环境与建筑学院,上海 200093;2. 自然资源部丘陵山地地质灾害防治重点实验室 福建省地质灾害重点实验室,福建 福州 350002;3. 国家海洋局北海预报中心 山东省海洋生态环境与防灾减灾重点实验室,山东 青岛 266061; 4. 北京交通大学 城市地下工程教育部重点实验室,北京 100044;5. 新加坡国立大学 土木与环境工程系,新加坡
  • 收稿日期:2021-10-14 修回日期:2022-03-24 出版日期:2022-06-21 发布日期:2022-06-30
  • 作者简介:张治国,男,1978年生,博士,博士后,教授,博导,主要从事地下工程,海洋地质工程等方面的研究工作。
  • 基金资助:
    国家自然科学基金(No.41772331,No.41977247,No.42177145);自然资源部丘陵山地地质灾害防治重点实验室(福建省地质灾害重点实验室)课题(FJKLGH2020K004);山东省海洋生态环境与防灾减灾重点实验室课题(201703)

Response analysis of sand seepage pressure around shield tunnel in sloping seabed under Stokes second order wave

ZHANG Zhi-guo1, 2, 3, 4, 5, YE Tong1, ZHANG Cheng-ping4, PAN Y T5, WU Zhong-teng2   

  1. 1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources, Fujian Key Laboratory of Geohazard Prevention, Fuzhou, Fujian 350002, China; 3. Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation, North Sea Marine Forecast Center of State Oceanic Administration, Qingdao, Shandong 266061, China; 4. Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China; 5. Department of Civil and Environmental Engineering, National University of Singapore, Singapore
  • Received:2021-10-14 Revised:2022-03-24 Online:2022-06-21 Published:2022-06-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41772331, 41977247,42177145), the Fund of Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources(Fujian Key Laboratory of Geohazard Prevention)(FJKLGH2020K004) and the Fund of Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation(201703).

摘要: 目前针对波浪作用下海底盾构隧道周围渗流场的既有理论研究一般将衬砌考虑为不透水介质,较少考虑隧道衬砌的渗透性,尤其是较少考虑海底斜坡地形下波浪非线性带来的影响。首先基于斜坡海床表面的动力边界条件,得到Stokes非线性波作用下自由海床的Biot固结孔压响应;其次,采用镜像法建立了由于隧道存在引起的砂土体摄动压力控制方程,并利用砂土与衬砌间渗流连续条件获得了该方程的Fourier级数展开解析解;接着,采用叠加原理得到了Stokes波作用下斜坡海床中隧道周围砂土的渗流压力响应解答;最后,将理论解析解与数值结果及已有的试验结果进行对比,获得了较好的一致性。此外,针对波浪敏感参数(波长、周期、形态)、海床敏感参数(海床渗透性、剪切模量、饱和度、坡度)及隧道敏感参数(衬砌厚度、渗透性、埋深)进行了影响因素分析。结果表明:随着波浪周期及波长增加,衬砌外超静孔压明显增加;随着水深沿斜坡方向减小,Airy波和Stokes波理论在适用范围内(d/L>0.125,d为海水深度,L为波长),获得的波浪压力差异明显增加,前者会低估隧道周围的超静孔隙水压力;当海床渗透系数较大时(ks>1×10−2 m/s),波长和海床饱和度的增加会造成衬砌外超静孔压增大,而海床剪切模量、海床坡度及隧道埋深的增加会造成衬砌外超静孔压减小,在坡度较大的斜坡海床中,隧道衬砌外超静孔压呈明显的非对称分布;当海床渗透系数较小时(ks<1×10−4 m/s),隧道周围超静孔隙水压处于较低水平,其他敏感参数的影响不显著;当隧道衬砌渗透系数较小时(kt<1×10−6 m/s),隧道对超静孔隙水压在砂土内传播的“阻挡”效应明显;当衬砌渗透系数较大时(kt>1×10−4 m/s),隧道周围砂质海床内超静孔压较低;衬砌厚度对衬砌外超静孔压分布影响不显著。

关键词: 海底盾构隧道, 斜坡海床, Stokes波, 渗流压力, 镜像法

Abstract:

At present, the existing theoretical research on the seepage field around the subsea shield tunnel under the action of waves generally considered the lining as impermeable medium, and rarely studied the permeability of the tunnel lining, especially the influence of wave nonlinearity under the seabed slope terrain. Firstly, based on the dynamic boundary conditions of sloping seabed surface, the Biot’s consolidated pore water pressure response of free seabed under Stokes nonlinear wave is obtained. Secondly, the mirror image method is introduced to establish a governing equation of excess pore water pressure caused by the existence of tunnel, and the analytical solution of the equation is obtained by Fourier series expansion under the condition of continuous seepage between sand and lining. After that, the seepage response solution of the sand around the tunnel in the sloping seabed under the action of Stokes wave is obtained based on the superposition principle. Finally, the theoretical analytical solution is compared with the numerical results and the existing experimental results, and a good agreement is obtained. In addition, the influencing factors of wave sensitive parameters (wavelength, period and shape), seabed sensitive parameters (seabed permeability, shear modulus, saturation and slope) and tunnel sensitive parameters (lining thickness, permeability and buried depth) are analyzed. The results show that the excess pore water pressure outside the lining increases obviously with the increase of wave period and wavelength. As the water depth decreases along the seabed slope, the difference of wave pressure obtained by Airy wave and Stokes wave theory increases significantly within the applicable range (d/L>0.125, where d is the water depth, and L is the wavelength), and the former will underestimate the excess pore water pressure around the tunnel. When the seabed permeability coefficient is large (ks>1×10−2 m/s), the increase of wavelength and seabed saturation will increase the excess pore pressure outside the lining, while the increase of seabed shear modulus, seabed slope and tunnel buried depth will reduce the excess pore pressure outside the lining. Under the condition of inclined seabed with large slope angle, the excess pore pressure outside the tunnel lining shows an obvious asymmetric distribution. When the seabed permeability coefficient is small (ks<1×10−4 m/s), the excess pore water pressure around the tunnel is at a low level, and the influence of other sensitive parameters is not significant. When the permeability coefficient of tunnel lining is small (kt<1×10−6 m/s), the "blocking" effect of tunnel on the propagation of excess pore water pressure in sand is obvious, but when the permeability coefficient of lining is large (kt>1×10−4 m/s), and the excess pore water pressure in the sandy seabed around the tunnel is low. The influence of lining thickness on the distribution of excess pore water pressure outside the lining is not significant.

Key words: subsea shield tunnel, sloping seabed, Stokes wave, seepage pressure, mirror image method

中图分类号: 

  • U45
[1] 张治国, 叶铜, 朱正国, PAN Y T, 吴钟腾, . 波浪作用下含气海床内盾构隧道水力及位移响应分析[J]. 岩土力学, 2023, 44(6): 1557-1574.
[2] 谢家冲, 黄昕, 金国龙, 张子新, . 局部水力交互下盾构隧道渗流与力学响应研究[J]. 岩土力学, 2023, 44(4): 1179-1189.
[3] 李鹏飞, 勾宝亮, 朱萌, 高晓静, 郭彩霞. 基于镜像法的隧道地表沉降时间效应计算方法[J]. 岩土力学, 2022, 43(3): 799-807.
[4] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
[5] 高 旭,郭建波,晏鄂川,. 考虑止水帷幕的深基坑降水预测解析计算[J]. , 2018, 39(4): 1431-1439.
[6] 张丙强, 王启云, 卢晓颖, . 软土地层浅埋圆形隧道非达西渗流场解析研究[J]. 岩土力学, 2018, 39(12): 4377-4384.
[7] 张琼方 ,林存刚 ,丁 智 ,夏唐代 ,单华峰 , . 盾构近距离下穿引起已建地铁隧道纵向变形理论研究[J]. , 2015, 36(S1): 568-572.
[8] 湛铠瑜 ,隋旺华 ,王文学 . 裂隙动水注浆渗流压力与注浆堵水效果的相关分析[J]. , 2012, 33(9): 2650-2655.
[9] 艾传志,王芝银. 既有路基下浅埋隧道开挖引起地层的位移及应力解析解[J]. , 2010, 31(2): 541-546.
[10] 齐静静,徐日庆,魏 纲. 双线平行盾构法隧道施工附加荷载的计算分析[J]. , 2009, 30(6): 1665-1670.
[11] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945-2949.
[12] 齐静静 ,徐日庆 ,魏 纲 ,王 涛 . 隧道盾构法施工引起周围土体附加应力分析[J]. , 2008, 29(2): 529-534.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘 晓,唐辉明,刘 瑜. 基于集对分析和模糊马尔可夫链的滑坡变形预测新方法研究[J]. , 2009, 30(11): 3399 -3405 .
[2] 胡大伟,周 辉,谢守益,张 凯,邵建富,冯夏庭. 大理岩破坏阶段Biot系数研究[J]. , 2009, 30(12): 3727 -3732 .
[3] 师旭超,韩 阳. 卸荷作用下软黏土回弹吸水试验研究[J]. , 2010, 31(3): 732 -736 .
[4] 原喜忠,李 宁,赵秀云,杨银涛. 东北多年冻土地区地基承载力对气候变化敏感性分析[J]. , 2010, 31(10): 3265 -3272 .
[5] 白 冰,李小春,石 露,唐礼忠. 弹塑性应力-应变曲线的斜率恒等式及其验证和应用[J]. , 2010, 31(12): 3789 -3792 .
[6] 唐利民. 地基沉降预测模型的正则化算法[J]. , 2010, 31(12): 3945 -3948 .
[7] 李占海,朱万成,冯夏庭,李绍军,周 辉,陈炳瑞. 侧压力系数对马蹄形隧道损伤破坏的影响研究[J]. , 2010, 31(S2): 434 -441 .
[8] 蔡辉腾,危福泉,蔡宗文. 重庆主城区粉质黏土动力特性研究[J]. , 2009, 30(S2): 224 -228 .
[9] 宋 玲 ,刘奉银 ,李 宁 . 旋压入土式静力触探机制研究[J]. , 2011, 32(S1): 787 -0792 .
[10] 金解放 ,李夕兵 ,殷志强 ,邹 洋. 循环冲击下波阻抗定义岩石损伤变量的研究[J]. , 2011, 32(5): 1385 -1393 .