岩土力学 ›› 2022, Vol. 43 ›› Issue (9): 2383-2390.doi: 10.16285/j.rsm.2021.1890

• 基础理论与实验研究 • 上一篇    下一篇

絮凝−真空−电渗联合加固滩涂软土的模型试验研究

张雷1, 2,吕延栋1,王炳辉1, 2,金丹丹2, 3,竺明星1,方晨4   

  1. 1. 江苏科技大学 土木工程与建筑学院,江苏 镇江 212100;2. 南京工业大学 岩土工程研究所,江苏 南京 211816; 3. 江苏大学 土木工程与力学学院,江苏 镇江 212013;4. 内布拉斯加大学 林肯分校 土木工程系,美国 林肯 68583
  • 收稿日期:2021-11-08 修回日期:2022-04-28 出版日期:2022-09-12 发布日期:2022-09-12
  • 通讯作者: 王炳辉,男,1980年生,博士,副教授,主要从事岩土地震工程、软土地基处理方面的研究。E-mail: wbhchina@126.com E-mail: lei.zhang@just.edu.cn
  • 作者简介:张雷,男,1989年生,博士,讲师,主要从事软土地基处理、环境岩土工程方面的研究
  • 基金资助:
    江苏省自然科学基金(No.BK20200996);中国博士后基金面上项目(No.2020M681566);国家自然科学基金(No.51978317);江苏省博士后科研资助计划(No.2021K493C)

Laboratory study of consolidation of marine soft soil using flocculation-vacuum preloading-electro-osmosis

ZHANG Lei1, 2, LÜ Yan-dong1, WANG Bing-hui1, 2, JIN Dan-dan2, 3, ZHU Ming-xing1, FANG Chen4   

  1. 1. School of Civil Engineering and Architecture, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; 2. Institute of Geotechnical Engineering, Nanjing Tech. University, Nanjing, Jiangsu 211816, China; 3. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 4. Faculty of Civil Engineering, University of Nebraska-Lincoln, Lincoln, USA 68583
  • Received:2021-11-08 Revised:2022-04-28 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of Jiangsu Province (BK20200996), China Postdoctoral Science Foundation (2020M681566), the National Natural Science Foundation of China (51978317) and Jiangsu Postdoctoral Research Funding Program (2021K493C).

摘要:

针对真空预压作用下排水板淤堵与排水条件受限等问题,提出絮凝−真空−电渗联合加固法。首先通过沉降柱试验确定合适的有机絮凝剂,然后采用该絮凝剂,分别在 48 h(开始介入真空预压,固结度为0 )、60 h(排水速率明显下降,固结度为60%)及 84 h(排水速率近乎 0,固结度为 80%)时介入电渗,开展不同电渗介入时间的絮凝−真空−电渗联合加固试验。试验从排水量、十字板剪切强度、含水率与孔压等对比分析联合加固的有效性,确定其最佳电渗介入时间。试验结果表明:当固结度为 80% 时介入电渗,絮凝−真空−电渗联合加固法能够有效地抑制排水速率减小的趋势,增长有效排水时间。同时,土体的抗剪强度和承载力亦得到大幅提升,孔压消散更加均匀。此外,在阳离子聚丙烯酰胺絮凝剂的作用下,初始排水速率快,在一定程度上使土体的渗透性得到提升,有效地解决了排水板淤堵问题,说明絮凝−真空−电渗联合加固法具有较强的优越性。

关键词: 真空预压, 电渗, 絮凝, 十字板剪切强度, 孔隙水压力

Abstract:

To solve the technical issues in vacuum preloading method, including the sediment clogging of drains and the limitation of drainage conditions, this study investigated vacuum preloading combined with flocculation and electro-osmosis consolidation for marine soft soil. A series of column settling tests was conducted to determine the optimal organic flocculant for the combined method. With the selected organic flocculant, laboratory tests were performed on the soil samples using the combined consolidation method, in which the electro-osmosis was added at different time moments. The tests considered three representative cases at different time moments: (i) at 48 h, i.e., the initial stage of vacuum preloading with the consolidation degree of 0; (ii) at 60 h, i.e., the obvious reduction in the dewatering speed with the consolidation degree of 60%; and (iii) at 84 h, i.e., the dewatering speed of 0 with the consolidation degree of 80%. The effectiveness of the combined method was evaluated using the tested results, including water discharge, soil vane shear strength, water content, and pore water pressure, along with the determination of the best time for adding the electro-osmosis. The results indicated that the combined method effectively delayed the decrease of dewatering efficiency and significantly increased dewatering duration. Also, the shear strength and load-bearing capacity of the consolidated soil were clearly improved, with the evenly dissipated pore water pressure. In addition, the cationic polyamide was the optimal flocculant for the combined method, which enhanced the initial dewatering speed and improved the permeability of the soft soil to solve the sediment clogging in the plastic board during the vacuum preloading. This research demonstrated the effectiveness of vacuum preloading combined with flocculation and electroosmosis consolidation for soil improvement.

Key words: vacuum preloading, electro-osmosis consolidation, flocculant, cross plate shear strength, pore water pressure

中图分类号: 

  • TU411
[1] 金丹丹, 鲁先东, 王炳辉, 施展, 张雷, . 冲击荷载下含夹层饱和砂土孔压变化规律分析[J]. 岩土力学, 2024, 45(4): 1081-1091.
[2] 刘景锦, 罗学思, 雷华阳, 郑刚, 罗昊鹏, . 等应变条件下增压式真空预压固结解析解[J]. 岩土力学, 2024, 45(3): 809-821.
[3] 李尧, 李嘉评. 复杂初始应力状态下松砂多向循环单剪特性[J]. 岩土力学, 2023, 44(9): 2555-2565.
[4] 王晓磊, 刘理腾, 刘润, 刘历波, 董林, 任海. 地震历史对各深度土体抗液化性影响的振动台试验研究[J]. 岩土力学, 2023, 44(9): 2657-2666.
[5] 简涛, 孔令伟, 柏巍, 舒荣军, . 基于耗散能量的饱和黄土动孔压模型[J]. 岩土力学, 2023, 44(8): 2238-2248.
[6] 赵津桥, 丁选明, 刘汉龙, 欧强, 蒋春勇, . 珊瑚砂振冲密实加固响应室内模型试验研究[J]. 岩土力学, 2023, 44(8): 2327-2336.
[7] 杨奇, 王晓雅, 聂如松, 陈琛, 陈缘正, 徐方, . 间歇循环荷载作用下饱和砂土累积塑性变形及孔压特性研究[J]. 岩土力学, 2023, 44(6): 1671-1683.
[8] 郭景琢, 郑刚, 赵林嵩, 潘军, 张宗俊, 周强, 程雪松, . 多排孔注浆引起土体变形与孔压规律试验研究[J]. 岩土力学, 2023, 44(3): 896-907.
[9] 陈平山, 吕卫清, 梁小丛, 周红星, 王婧, 马佳钧, . 含细粒珊瑚土抗液化特性试验研究[J]. 岩土力学, 2023, 44(2): 337-344.
[10] 何文, 陈豪, 郑场松, 卢博凯, 王慢慢, . 尾矿渗透破坏及其导波监测试验研究[J]. 岩土力学, 2023, 44(2): 415-424.
[11] 胡利文, 洪义, 王德咏, . 水下双面真空预压离心模型试验及数值模拟分析[J]. 岩土力学, 2023, 44(10): 3059-3070.
[12] 秦爱芳, 孟红苹, 江良华. 电渗−堆载作用下非饱和土轴对称固结特性分析[J]. 岩土力学, 2022, 43(S1): 97-106.
[13] 丁瑜, 贾羽, 王晅, 张家生, 陈晓斌, 罗昊, 张宇, . 颗粒级配及初始干密度对路基翻浆冒泥特性的影响[J]. 岩土力学, 2022, 43(9): 2539-2549.
[14] 杜宇, 刘松玉, 祝刘文, 邹海峰, 蔡国军, . 基于孔压静力触探试验的水运工程土分类方法研究[J]. 岩土力学, 2022, 43(5): 1353-1363.
[15] 雷华阳, 王磊, 刘景锦, 王鹏, 章纬地, 薄钰, . 化学改性联合真空预压法加固吹填土试验分析[J]. 岩土力学, 2022, 43(4): 891-900.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 尤红兵,赵凤新,李方杰. 层状场地中局部不均体对平面P波的散射[J]. , 2009, 30(10): 3133 -3138 .
[2] 施锡林,李银平,杨春和,屈丹安,马洪岭. 盐穴储气库水溶造腔夹层垮塌力学机制研究[J]. , 2009, 30(12): 3615 -3620 .
[3] 肖衡林,余天庆. 山区挡土墙土压力的现场试验研究[J]. , 2009, 30(12): 3771 -3775 .
[4] 姚显春,李 宁,曲 星,孙宏超,景茂贵. 拉西瓦水电站地下厂房三维高地应力反演分析[J]. , 2010, 31(1): 246 -252 .
[5] 黄广龙,惠 刚,方 乾,徐洪钟. MC桩组合支护结构设计与应用研究[J]. , 2009, 30(9): 2697 -2702 .
[6] 吕颖慧,刘泉声,江 浩. 基于高应力下花岗岩卸荷试验的力学变形特性研究[J]. , 2010, 31(2): 337 -344 .
[7] 张 敏,吴宏伟. 离心试验中的地下水模拟控制研究[J]. , 2010, 31(2): 355 -360 .
[8] 赵炼恒,罗 强,李 亮,但汉成,刘 项. 水平浅埋条形锚板极限抗拔力上限计算[J]. , 2010, 31(2): 516 -522 .
[9] 周 健,周凯敏,贾敏才,史旦达. 成层软黏土地基的固结沉降计算分析[J]. , 2010, 31(3): 789 -793 .
[10] 江洎洧,项 伟,唐辉明,曾 斌,黄 玲. 极限蓄水位下洞坪水库大沟湾滑坡稳定性预测[J]. , 2010, 31(3): 805 -810 .