岩土力学 ›› 2022, Vol. 43 ›› Issue (9): 2383-2390.doi: 10.16285/j.rsm.2021.1890

• 基础理论与实验研究 • 上一篇    下一篇

絮凝−真空−电渗联合加固滩涂软土的模型试验研究

张雷1, 2,吕延栋1,王炳辉1, 2,金丹丹2, 3,竺明星1,方晨4   

  1. 1. 江苏科技大学 土木工程与建筑学院,江苏 镇江 212100;2. 南京工业大学 岩土工程研究所,江苏 南京 211816; 3. 江苏大学 土木工程与力学学院,江苏 镇江 212013;4. 内布拉斯加大学 林肯分校 土木工程系,美国 林肯 68583
  • 收稿日期:2021-11-08 修回日期:2022-04-28 出版日期:2022-09-12 发布日期:2022-09-12
  • 通讯作者: 王炳辉,男,1980年生,博士,副教授,主要从事岩土地震工程、软土地基处理方面的研究。E-mail: wbhchina@126.com E-mail: lei.zhang@just.edu.cn
  • 作者简介:张雷,男,1989年生,博士,讲师,主要从事软土地基处理、环境岩土工程方面的研究
  • 基金资助:
    江苏省自然科学基金(No.BK20200996);中国博士后基金面上项目(No.2020M681566);国家自然科学基金(No.51978317);江苏省博士后科研资助计划(No.2021K493C)

Laboratory study of consolidation of marine soft soil using flocculation-vacuum preloading-electro-osmosis

ZHANG Lei1, 2, LÜ Yan-dong1, WANG Bing-hui1, 2, JIN Dan-dan2, 3, ZHU Ming-xing1, FANG Chen4   

  1. 1. School of Civil Engineering and Architecture, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China; 2. Institute of Geotechnical Engineering, Nanjing Tech. University, Nanjing, Jiangsu 211816, China; 3. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 4. Faculty of Civil Engineering, University of Nebraska-Lincoln, Lincoln, USA 68583
  • Received:2021-11-08 Revised:2022-04-28 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of Jiangsu Province (BK20200996), China Postdoctoral Science Foundation (2020M681566), the National Natural Science Foundation of China (51978317) and Jiangsu Postdoctoral Research Funding Program (2021K493C).

摘要:

针对真空预压作用下排水板淤堵与排水条件受限等问题,提出絮凝−真空−电渗联合加固法。首先通过沉降柱试验确定合适的有机絮凝剂,然后采用该絮凝剂,分别在 48 h(开始介入真空预压,固结度为0 )、60 h(排水速率明显下降,固结度为60%)及 84 h(排水速率近乎 0,固结度为 80%)时介入电渗,开展不同电渗介入时间的絮凝−真空−电渗联合加固试验。试验从排水量、十字板剪切强度、含水率与孔压等对比分析联合加固的有效性,确定其最佳电渗介入时间。试验结果表明:当固结度为 80% 时介入电渗,絮凝−真空−电渗联合加固法能够有效地抑制排水速率减小的趋势,增长有效排水时间。同时,土体的抗剪强度和承载力亦得到大幅提升,孔压消散更加均匀。此外,在阳离子聚丙烯酰胺絮凝剂的作用下,初始排水速率快,在一定程度上使土体的渗透性得到提升,有效地解决了排水板淤堵问题,说明絮凝−真空−电渗联合加固法具有较强的优越性。

关键词: 真空预压, 电渗, 絮凝, 十字板剪切强度, 孔隙水压力

Abstract:

To solve the technical issues in vacuum preloading method, including the sediment clogging of drains and the limitation of drainage conditions, this study investigated vacuum preloading combined with flocculation and electro-osmosis consolidation for marine soft soil. A series of column settling tests was conducted to determine the optimal organic flocculant for the combined method. With the selected organic flocculant, laboratory tests were performed on the soil samples using the combined consolidation method, in which the electro-osmosis was added at different time moments. The tests considered three representative cases at different time moments: (i) at 48 h, i.e., the initial stage of vacuum preloading with the consolidation degree of 0; (ii) at 60 h, i.e., the obvious reduction in the dewatering speed with the consolidation degree of 60%; and (iii) at 84 h, i.e., the dewatering speed of 0 with the consolidation degree of 80%. The effectiveness of the combined method was evaluated using the tested results, including water discharge, soil vane shear strength, water content, and pore water pressure, along with the determination of the best time for adding the electro-osmosis. The results indicated that the combined method effectively delayed the decrease of dewatering efficiency and significantly increased dewatering duration. Also, the shear strength and load-bearing capacity of the consolidated soil were clearly improved, with the evenly dissipated pore water pressure. In addition, the cationic polyamide was the optimal flocculant for the combined method, which enhanced the initial dewatering speed and improved the permeability of the soft soil to solve the sediment clogging in the plastic board during the vacuum preloading. This research demonstrated the effectiveness of vacuum preloading combined with flocculation and electroosmosis consolidation for soil improvement.

Key words: vacuum preloading, electro-osmosis consolidation, flocculant, cross plate shear strength, pore water pressure

中图分类号: 

  • TU411
[1] 秦爱芳, 孟红苹, 江良华. 电渗−堆载作用下非饱和土轴对称固结特性分析[J]. 岩土力学, 2022, 43(S1): 97-106.
[2] 丁瑜, 贾羽, 王晅, 张家生, 陈晓斌, 罗昊, 张宇, . 颗粒级配及初始干密度对路基翻浆冒泥特性的影响[J]. 岩土力学, 2022, 43(9): 2539-2549.
[3] 杜宇, 刘松玉, 祝刘文, 邹海峰, 蔡国军, . 基于孔压静力触探试验的水运工程土分类方法研究[J]. 岩土力学, 2022, 43(5): 1353-1363.
[4] 雷华阳, 王磊, 刘景锦, 王鹏, 章纬地, 薄钰, . 化学改性联合真空预压法加固吹填土试验分析[J]. 岩土力学, 2022, 43(4): 891-900.
[5] 李长辉, 武航, 程国勇, 陈宇, 金敏, 常雷, . 不同排水板真空预压软土加固对比试验研究[J]. 岩土力学, 2022, 43(10): 2819-2827.
[6] 苏新斌, 廖晨聪, 刘世奥, 张璐璐, . 基于预制滑动面的饱和黏土−结构物界面强度特性 三轴试验研究[J]. 岩土力学, 2022, 43(10): 2852-2860.
[7] 杨佳乐, 李双洋, 刘德仁, 王旭, 朱怀太, 徐硕昌, . 絮凝−电渗法联合治理淤泥质土试验研究[J]. 岩土力学, 2022, 43(10): 2861-2872.
[8] 尹小卡, 杜思义, 王涛涛. 砂土液化与水泥粉煤灰碎石桩施工参数 关系的试验研究[J]. 岩土力学, 2021, 42(9): 2518-2524.
[9] 王静, 肖涛, 朱鸿鹄, 梅国雄, 刘拯源, 魏广庆, . 透水管桩现场试验光纤监测与承载性能研究[J]. 岩土力学, 2021, 42(7): 1961-1970.
[10] 雷华阳, 王鹏, 刘旭, 王磊, . 基于气体运移规律的增压式真空预压法 加固机制分析[J]. 岩土力学, 2021, 42(4): 943-953.
[11] 胡利文, 刘志军, . 真空预压加固土体变形机制分析[J]. 岩土力学, 2021, 42(3): 790-799.
[12] 孙宏磊, 陆逸, 潘晓东, 史吏, 蔡袁强, . 真空预压作用下初始含水率 对疏浚淤泥固结影响研究[J]. 岩土力学, 2021, 42(11): 3029-3040.
[13] 任连伟, 曹辉, 孔纲强, . 注入位置对化学电渗法加固软黏土 效果影响试验研究[J]. 岩土力学, 2021, 42(10): 2705-2712.
[14] 张峰瑞, 姜谙男, 杨秀荣. 孔隙水压力对锯齿状结构面剪切蠕变特性的影响[J]. 岩土力学, 2020, 41(9): 2901-2912.
[15] 张小玲, 朱冬至, 许成顺, 杜修力, . 强度弱化条件下饱和砂土地基中桩−土 相互作用p-y曲线研究[J]. 岩土力学, 2020, 41(7): 2252-2260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .