岩土力学 ›› 2022, Vol. 43 ›› Issue (9): 2371-2382.doi: 10.16285/j.rsm.2021.1924

• 基础理论与实验研究 • 上一篇    下一篇

刚性挡墙后非饱和土破坏模式及主动土压力计算

邓波1, 2,杨明辉2,王东星3,樊军伟1   

  1. 1. 南华大学 土木工程学院,湖南 衡阳 421001;2. 厦门大学 建筑与土木工程学院,福建 厦门 361005; 3. 武汉大学 土木建筑工程学院,湖北 武汉 430072
  • 收稿日期:2021-11-13 修回日期:2022-04-29 出版日期:2022-09-12 发布日期:2022-09-12
  • 通讯作者: 杨明辉,男,1978年生,博士,教授,主要从事桩基础及特殊土路基工程研究。E-mail: yamih@hnu.edu.cn E-mail: parl_d@126.com
  • 作者简介:邓波,男,1991年生,博士,讲师,主要从事非饱和土力学理论与应用等研究
  • 基金资助:
    湖南省自然科学青年基金资助项目(No.2021JJ40460);国家自然科学基金资助项目(No.51678230,No.52079098)。

Failure mode and active earth pressure calculation of unsaturated soil behind rigid retaining wall

DENG Bo1, 2, YANG Ming-hui2, WANG Dong-xing3, FAN Jun-wei1   

  1. 1. College of Civil Engineering, University of South China, Hengyang, Hunan 421001, China; 2. Department of Civil Engineering, Xiamen University, Xiamen, Fujian 361005, China; 3. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
  • Received:2021-11-13 Revised:2022-04-29 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the Natural Science Foundation for Youths of Hunan Province of China (2021JJ40460) and the National Natural Science Foundation of China (51678230, 52079098).

摘要: 目前主动土压力计算方法多仅针对土体处于饱和或干燥状态,忽略了其从非饱和到局部饱和,或饱和到非饱和的渐变过程,进而导致计算结果失真。鉴于此,首先开展了一系列刚性挡墙非饱和砂土主动土压力模型试验,揭示了墙后土体的破坏规律:(1)墙后土体顶部出现了近似竖直裂缝,且其发展深度随墙面粗糙度和含水率的增加而变大;(2)墙土界面摩擦对塑性区形状影响较小,且在挡墙移动过程中,墙后土体塑性区形状始终近似保持为平面。在试验基础上,引入广义有效应力原理,基于极限平衡分析建立了考虑吸应力效应的非饱和土主动土压力计算方法,理论与试验实测值表明,所提方法相比其他方法,更接近于试验值。分析了各主要因素对非饱和土压力分布规律的影响,结果表明:主动土压力随有效内摩擦角值增加而减少,而界面摩擦角对其分布影响较小;相比于无吸力情况,考虑吸力时主动土压力更小;随着进气值增加,吸应力对主动土压力的贡献减少,最终趋于恒定。

关键词: 挡土墙, 模型试验, 主动土压力, 基质吸力, 界面粗糙度

Abstract:

At present, the calculation methods of active earth pressure are mostly only for the soil in a saturated or dry state, ignoring the gradual process of soil from unsaturated to partially saturated, or from saturated to unsaturated, which leads to distortion of the calculation results. In this study, a series of model tests on the active earth pressure of unsaturated sand behind retaining wall is carried out to reveal the failure law of soil behind the wall. Observations show that, 1) there is an approximately vertical crack on the top of the soil behind the wall, and its development depth increases with the increase of wall surface roughness and water content;  2) the wall-soil interface friction has almost no effect on the plastic zone of the soil behind the wall, and the shape of the plastic zone  remains approximately flat during the movement of the retaining wall. On the basis of tests, the generalized effective stress principle is introduced, an analytical method for calculating active earth pressure of unsaturated soil considering the effect of suction stress is developed based on limit equilibrium analysis. The theoretical and experimental results show that the proposed method is closer to the experimental values than other methods. Finally, the main factors influencing the active earth pressure of unsaturated soil are analyzed, and it is found that the active earth pressure decreases with the increase of soil friction angle, but the interface friction angle has little influence on the distribution of active earth pressure; compared with no suction case, the active earth pressure is smaller when considering suction; with the increase of air-entry value, the contribution of the suction stress to the active earth pressure decreases and eventually tends to be constant.

Key words: retaining wall, model test, active earth pressure, matric suction, interface roughness

中图分类号: 

  • TU470
[1] 刘斯宏, 沈超敏, 程德虎, 张呈斌, 毛航宇, . 土工袋加固膨胀土边坡降雨−日晒循环试验研究[J]. 岩土力学, 2022, 43(S2): 35-42.
[2] 汤炀, 刘干斌, 郑明飞, 史世雍, . 饱和粉土中相变能源桩热力响应模型试验研究[J]. 岩土力学, 2022, 43(S2): 282-290.
[3] 钟卫, 张 帅, 贺拿. 基于相对变形方法的桩后土拱模型试验研究[J]. 岩土力学, 2022, 43(S2): 315-326.
[4] 罗维平, 袁大军, 金大龙, 陆平, 陈健, 郭海鹏, . 富水砂层盾构开挖面支护压力与地层变形关系 离心模型试验研究[J]. 岩土力学, 2022, 43(S2): 345-354.
[5] 单治钢, 高上, 孙淼军, 陈雨雪, 李利平, 成帅, 周宗青, . 波浪作用下近海滑坡机制模型试验与 数值模拟研究[J]. 岩土力学, 2022, 43(S2): 541-552.
[6] 刘博, 徐飞, 赵维刚, 高阳, . 隧道工程结构模型试验系统研究综述与展望[J]. 岩土力学, 2022, 43(S1): 452-468.
[7] 王心博, 王路君, 朱斌, 王鹏, 袁思敏, 陈云敏, . 水合物储层伺服降压开采模型试验研究[J]. 岩土力学, 2022, 43(9): 2360-2370.
[8] 韦超, 朱鸿鹄, 高宇新, 王静, 张巍, 施斌, . 地面塌陷分布式光纤感测模型试验研究[J]. 岩土力学, 2022, 43(9): 2443-2456.
[9] 闫国强, 殷跃平, 黄波林, 胡雷, . 三峡库区顺层灰岩岸坡劣化−溃屈灾变机制研究[J]. 岩土力学, 2022, 43(9): 2568-2580.
[10] 兰景岩, 蔡金豆, 吴连斌, 史庆旗, . 含隧道场地地震动放大效应的深度变化规律研究[J]. 岩土力学, 2022, 43(8): 2083-2091.
[11] 柴源, 牛勇, 吕海波, . 水泥胶结钙质砂地层中单桩竖向承载特性试验研究[J]. 岩土力学, 2022, 43(8): 2203-2212.
[12] 陈柏吉, 肖世国, . 考虑条间剪力的刚性挡墙静力与 地震主动土压力水平条分法[J]. 岩土力学, 2022, 43(8): 2263-2276.
[13] 王智超, 罗磊, 田英辉, 张春会, . 非饱和压实土率敏性及蠕变时效特征试验研究[J]. 岩土力学, 2022, 43(7): 1816-1824.
[14] 樊浩博, 周定坤, 刘勇, 宋玉香, 朱正国, 朱永全, 高新强, 郭佳奇, . 富水管道型岩溶隧道衬砌结构力学响应特征研究[J]. 岩土力学, 2022, 43(7): 1884-1898.
[15] 刘新喜, 李彬, 王玮玮, 贺程, 李松. 基于主应力迹线分层的有限土体土压力计算[J]. 岩土力学, 2022, 43(5): 1175-1186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .