岩土力学 ›› 2022, Vol. 43 ›› Issue (9): 2581-2591.doi: 10.16285/j.rsm.2021.1936

• 岩土工程研究 • 上一篇    下一篇

基于Pasternak地基模型的非线性土抗力−桩 身侧向位移曲线在基坑支护桩中的应用

朱彦鹏1, 2,吴林平1, 2,施多邦1, 2,赵壮福1, 2,吕向向1, 2,段新国1, 2   

  1. 1. 兰州理工大学 甘肃省土木工程防灾减灾重点实验室,甘肃 兰州 730050; 2. 兰州理工大学 西部土木工程防灾减灾教育部工程研究中心,甘肃 兰州 730050
  • 收稿日期:2021-11-16 修回日期:2022-05-06 出版日期:2022-09-12 发布日期:2022-09-12
  • 通讯作者: 吴林平,男,1996年生,硕士研究生,主要从事支挡结构方面的研究工作。E-mail: wlping0916@163.com E-mail:zhuyp1@163.com
  • 作者简介:朱彦鹏,男,1960年生,硕士,教授,博士生导师,主要从事支挡结构、工程事故分析与处理等方面的教学与研究工作。
  • 基金资助:
    国家自然基金面上项目(No.51978321)。

Application of nonlinear soil resistance-pile lateral displacement curve based on Pasternak foundation model in foundation pit retaining piles

ZHU Yan-peng1, 2, WU Lin-ping1, 2, SHI Duo-bang1, 2, ZHAO Zhuang-fu1, 2, LÜ Xiang-xiang1, 2, DUAN Xin-guo1, 2   

  1. 1. Key Laboratory of Disaster Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2. Western Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
  • Received:2021-11-16 Revised:2022-05-06 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China(51978321).

摘要: 支护桩作为基坑开挖过程中的直接挡土结构,在水平荷载作用下,桩身的内力与变形情况对基坑工程的安全性和经济性影响较大。为了更准确地计算支护桩的内力与变形,依据桩−土相互作用的非线性土抗力−桩身侧向位移(p-)曲线,得到呈非线性变化的地基反力模量,同时引入 Pasternak 双参数地基模型充分考虑桩侧土体受力变形的连续性,推导了考虑桩−锚变形协调的支护桩挠曲微分方程,并利用传递矩阵法求得支护桩的内力与变形。结合工程实例编制计算程序,并将程序计算结果与监测值、基于传统 Winkler 地基模型的 p-y 曲线法计算结果对比分析,发现传统 Winkler 单参数地基模型会高估支护桩的水平变形和内力,而程序计算的位移和弯矩能更好地满足工程实际要求。进一步采用有限元软件对工程实例进行数值模拟分析,验证基于非线性 Pasternak 双参数地基模型的基坑支护桩计算方法的合理性和适用性。

关键词: 基坑, 支护桩, p-y曲线, Pasternak双参数地基模型, 传递矩阵法

Abstract: As a direct retaining structure in the process of foundation pit excavation, the internal force and deformation of pile under horizontal load have great influence on the safety and economy of foundation pit engineering. In order to calculate the internal force and deformation of the supporting pile more accurately, the nonlinear foundation reaction modulus is obtained according to the nonlinear soil resistance-pile lateral displacement (p-y) curve of pile-soil interaction. At the same time, the Pasternak two-parameter foundation model is introduced to fully consider the continuity of pile side soil deformation. The differential equation of retaining pile deflection considering pile-anchor deformation coordination is derived, and the internal force and deformation of the retaining pile are obtained by the transfer matrix method. Then the calculation program is compiled based on the engineering example, and the calculation results of the program are compared with the monitoring values and the calculation results of the p-y curve method based on the traditional Winkler foundation model. It is found that the traditional Winkler foundation model will overestimate the horizontal deformation and internal force of the retaining pile. The displacement and bending moment calculated by the program can better meet the actual requirements of the project. Furthermore, the finite element software is used for numerical simulation analysis of the engineering example to verify the rationality and applicability of the calculation method of foundation pit supporting piles based on the nonlinear Pasternak two-parameter foundation model.

Key words: foundation pit, retaining pile, p-y curve, Pasternak two-parameter foundation model, transfer matrix method

中图分类号: 

  • TU473
[1] 雷国平, 苏栋, 程马遥, 刘慧芬, 张维, . 基于被动区土弹簧刚度降低过程的基坑围护结构计算增量法及软化p-y 曲线[J]. 岩土力学, 2024, 45(3): 797-808.
[2] 吴小锋, 张笛, 李星, 汪玉冰, 文凯, . 可液化场地桩基震后水平变形预测模型研究[J]. 岩土力学, 2024, 45(1): 77-86.
[3] 张治国, 毛敏东, 王卫东, PAN Y T, 吴钟腾, . 降雨影响下基坑开挖施工对邻近基桩变形响应分析[J]. 岩土力学, 2023, 44(S1): 27-49.
[4] 张坤勇, 张梦, 孙斌, 李福东, 简永洲, . 考虑时空效应的软土狭长型深基坑地连墙变形计算方法[J]. 岩土力学, 2023, 44(8): 2389-2399.
[5] 陈保国, 贾曾潘. 近接建筑荷载作用下阳角型深基坑最佳支撑位置[J]. 岩土力学, 2023, 44(8): 2400-2408.
[6] 崔瑜瑜, 吴立鹏, 沈兴华, 王兴召, 秦亚琼, 刘杰, 卢正, 吴磊, . 粉质黏土基坑卸荷隆起变形的简化计算方法[J]. 岩土力学, 2023, 44(5): 1425-1434.
[7] HANIFAH Hermil Rizki, RAHARDJO Paulus Pramono, LIM Aswin. 砂土地层圆形深基坑三维分析与测斜仪测量[J]. 岩土力学, 2023, 44(4): 1142-1152.
[8] 王锐松, 郭成超, 林沛元, 王复明, . 富水粉土基坑装配式可回收支护开挖响应分析[J]. 岩土力学, 2023, 44(3): 843-853.
[9] 余俊, 张志中, 郑靖凡, 和振. 水位波动条件下有封底基坑渗流场孔压解析解[J]. 岩土力学, 2023, 44(12): 3415-3423.
[10] 应宏伟, 熊一帆, 沈华伟, 魏锋, 李冰河, 吕唯, . 考虑圆孔不均匀收敛和空间效应的基坑坑外土体水平位移场分析[J]. 岩土力学, 2023, 44(12): 3565-3576.
[11] 余俊, 张扬, 郑靖凡, 张志中. 考虑潜水面的基坑二维稳态渗流场解析解[J]. 岩土力学, 2023, 44(11): 3109-3116.
[12] 管凌霄, 徐长节, 王雪鹏, 夏雪勤, 可文海, . 基坑开挖及降水引起下卧隧道变形的解析解[J]. 岩土力学, 2023, 44(11): 3241-3251.
[13] 李瑛, 刘岸军, 刘兴旺. 考虑假想基础宽度的基坑抗隆起稳定性[J]. 岩土力学, 2023, 44(10): 2843-2850.
[14] 白时雨, 王文军, 谢新宇, 朱德良, . 考虑扰动影响的土体小应变硬化模型参数试验研究及其在基坑工程中的应用[J]. 岩土力学, 2023, 44(1): 206-216.
[15] 刘波, 章定文, 李建春, . 基于多案例统计的基坑开挖引起侧方既有隧道 变形预测公式及其工程应用[J]. 岩土力学, 2022, 43(S1): 501-512.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴世余,余金煌. 不透水地基上堤坝上游坡的附加渗径[J]. , 2009, 30(10): 3151 -3153 .
[2] 王星华,章 敏,王随新. 考虑渗流及软化的海底隧道围岩弹塑性分析[J]. , 2009, 30(11): 3267 -3272 .
[3] 殷 杰,高玉峰,洪振舜. 连云港软黏土的不排水强度试验研究[J]. , 2009, 30(11): 3297 -3301 .
[4] 付宏渊,吴胜军,王桂尧. 荷载作用引起砂土渗透性变化的试验研究[J]. , 2009, 30(12): 3677 -3681 .
[5] 黄耀英,王润富,吴中如. 关于弹性力学半无限问题的注记[J]. , 2009, 30(12): 3682 -3688 .
[6] 彭 鹏,宋汉周,郭张军. 基于数据融合理论的某坝段地下水宏观动态研究[J]. , 2009, 30(12): 3820 -3824 .
[7] 陈绍杰,郭惟嘉,杨永杰. 煤岩蠕变模型与破坏特征试验研究[J]. , 2009, 30(9): 2595 -2598 .
[8] 尹光志,岳 顺,钟 焘,,李德泉. 基于ARMA模型的隧道位移时间序列分析[J]. , 2009, 30(9): 2727 -2732 .
[9] 苏利军,孙金山,卢文波. 基于颗粒流模型的TBM滚刀破岩过程数值模拟研究[J]. , 2009, 30(9): 2823 -2829 .
[10] 朱继良,黄润秋,张诗媛,徐德敏. 某水电站进水口高边坡开挖的变形响应研究[J]. , 2010, 31(2): 593 -598 .