岩土力学 ›› 2022, Vol. 43 ›› Issue (9): 2360-2370.doi: 10.16285/j.rsm.2021.1956

• 基础理论与实验研究 • 上一篇    下一篇

水合物储层伺服降压开采模型试验研究

王心博1, 2,王路君1, 2, 3,朱斌1, 2, 3,王鹏1, 2,袁思敏1, 2,陈云敏1, 2, 3   

  1. 1. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058;2. 浙江大学 岩土工程研究所,浙江 杭州 310058; 3. 浙江大学 超重力研究中心,浙江 杭州 310058
  • 收稿日期:2021-11-18 修回日期:2022-04-28 出版日期:2022-09-12 发布日期:2022-09-12
  • 通讯作者: 王路君,男,1985年生,博士,副教授,主要从事水合物沉积物力学特性和土体多相多场耦合方面的研究。E-mail: lujunwang@zju.edu.cn E-mail:wangxinbo@zju.edu.cn
  • 作者简介:王心博,男,1997年生,硕士研究生,主要从事天然气水合物开采与变形特性物理模拟方面的研究。
  • 基金资助:
    国家自然科学基金项目(No.51988101,No.52078458);浙江省自然科学基金项目(No.LCD19E090001)。

Experimental study of behavior of hydrate-bearing sediments during servo depressurization

WANG Xin-bo1, 2, WANG Lu-jun1, 2, 3, ZHU Bin1, 2, 3, WANG Peng1, 2, YUAN Si-min1, 2, CHEN Yun-min1, 2, 3   

  1. 1. Key Laboratory of Soft Soils and Geoenvironmental Engineering of the Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310058, China; 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China; 3. Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou, Zhejiang 310058, China
  • Received:2021-11-18 Revised:2022-04-28 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51988101, 52078458) and Zhejiang Natural Science Foundation (LCD19E090001).

摘要: 深海水合物赋存于一定的温度和压力环境下,降压开采时降压速率对分解产气速率和储层变形特性影响显著。利用浙江大学自主研发的水合物降压开采试验装置,通过伺服控制降压速率,初步开展了水合物储层模型降压开采试验,研究了储层温度场、孔压场、产气量等的响应特性,探讨了降压速率对产气效率和储层变形特性的影响规律。试验表明:水合物竖井降压开采时,开采井周围储层温度率先下降,分解域由井周逐步向周围发展。适当提高降压速率能够提高储层开采效率,但降压速率过快时易导致水合物重生成,反而不利于水合物高效持续稳定开采,开采时应选择合理的降压速率以达到最优产气效率。开采过程中根据储层孔隙与外界连通程度,储层孔隙状态可分为完全封闭型、局部封闭型和开放型3种类型。储层开采试验完成后,浅层土体出现 3 种不同变形特征的区域:I 区为井周土层,呈漏斗型下陷;II 区土层平坦,无明显扰动痕迹;III 区为边界土层,该处水气产出受阻导致部分气体向上迁移引起土丘状隆起带出现。这些变形特征与气体在储层中的迁移路径和运移模式相关。通过相似性分析,给出了模型与原型分解时间和产气量等的对应关系。

关键词: 水合物, 降压开采, 土体变形, 模型试验, 产气速率

Abstract: Natural gas hydrate in deep sea exists in a certain temperature and pressure condition. The depressurization rate during hydrate dissociation by depressurization has a great impact on the gas production rate and hydrate-bearing sediment deformation characteristics. In order to investigate the influence of depressurization rate on temperature field, pore pressure field, deformation characteristics, and gas production rate of hydrate-bearing sediment, a group of depressurization tests with different depressurization rates was carried out on the apparatus independently developed by Zhejiang University that can perform linear gradient servo depressurization for simulating the hydrate decomposition process. The results show that the temperature decreases first from the perimeter of the shaft where the decomposition region starts, and then gradually spreads to the surrounding sediment at the initial stage of depressurization. Increasing the depressurization rate appropriately can improve the production efficiency of the reservoir, but the higher depressurization rate may cause the hydrate regeneration, which is not conducive to gas production. Optimal gas production efficiency can be obtained by selecting a specific depressurization rate. In the process of hydrate exploitation, the pore shape of the hydrate-bearing sediment can be divided into three types, according to the connection degree between pores and the surrounding area: completely sealed, partially sealed, and open. After hydrate exploitation, the shallow surface soil of reservoir can be divided into three areas based on the deformation characteristics: Zone I is the soil layer around the shaft, showing a funnel-shaped subsidence structure; the soil layer in Zone II is flat with no obvious disturbance; Zone III is the boundary soil layer, where the upward migration of water and gas production is blocked, leading to a mound like uplift zone. These deformation characteristics are related to the migration paths and modes of gas production in hydrate-bearing sediment. Through similarity analysis, the corresponding relationships between the decomposition time and gas production of the model and prototype are given.

Key words: hydrate, depressurizing production, soil deformations, model test, gas production rate

中图分类号: 

  • TU411
[1] 刘斯宏, 沈超敏, 程德虎, 张呈斌, 毛航宇, . 土工袋加固膨胀土边坡降雨−日晒循环试验研究[J]. 岩土力学, 2022, 43(S2): 35-42.
[2] 汤炀, 刘干斌, 郑明飞, 史世雍, . 饱和粉土中相变能源桩热力响应模型试验研究[J]. 岩土力学, 2022, 43(S2): 282-290.
[3] 钟卫, 张 帅, 贺拿. 基于相对变形方法的桩后土拱模型试验研究[J]. 岩土力学, 2022, 43(S2): 315-326.
[4] 罗维平, 袁大军, 金大龙, 陆平, 陈健, 郭海鹏, . 富水砂层盾构开挖面支护压力与地层变形关系 离心模型试验研究[J]. 岩土力学, 2022, 43(S2): 345-354.
[5] 单治钢, 高上, 孙淼军, 陈雨雪, 李利平, 成帅, 周宗青, . 波浪作用下近海滑坡机制模型试验与 数值模拟研究[J]. 岩土力学, 2022, 43(S2): 541-552.
[6] 周春旭, 张水涛, 贺甲元, 代晓亮, 李丽君, 王琳琳, . 南海天然气水合物储层多孔弹性力学研究[J]. 岩土力学, 2022, 43(S1): 375-382.
[7] 刘博, 徐飞, 赵维刚, 高阳, . 隧道工程结构模型试验系统研究综述与展望[J]. 岩土力学, 2022, 43(S1): 452-468.
[8] 邓波, 杨明辉, 王东星, 樊军伟, . 刚性挡墙后非饱和土破坏模式及主动土压力计算[J]. 岩土力学, 2022, 43(9): 2371-2382.
[9] 韦超, 朱鸿鹄, 高宇新, 王静, 张巍, 施斌, . 地面塌陷分布式光纤感测模型试验研究[J]. 岩土力学, 2022, 43(9): 2443-2456.
[10] 刘燕晶, 王路君, 朱斌, 陈云敏, . 考虑填充和黏结作用的含水合物 沉积物弹塑性本构模型[J]. 岩土力学, 2022, 43(9): 2471-2482.
[11] 闫国强, 殷跃平, 黄波林, 胡雷, . 三峡库区顺层灰岩岸坡劣化−溃屈灾变机制研究[J]. 岩土力学, 2022, 43(9): 2568-2580.
[12] 兰景岩, 蔡金豆, 吴连斌, 史庆旗, . 含隧道场地地震动放大效应的深度变化规律研究[J]. 岩土力学, 2022, 43(8): 2083-2091.
[13] 柴源, 牛勇, 吕海波, . 水泥胶结钙质砂地层中单桩竖向承载特性试验研究[J]. 岩土力学, 2022, 43(8): 2203-2212.
[14] 樊浩博, 周定坤, 刘勇, 宋玉香, 朱正国, 朱永全, 高新强, 郭佳奇, . 富水管道型岩溶隧道衬砌结构力学响应特征研究[J]. 岩土力学, 2022, 43(7): 1884-1898.
[15] 张雨坤, 秦廷辉, 李大勇, 王冲冲, . 分层土中裙式吸力基础吸力沉贯特性模型试验研究[J]. 岩土力学, 2022, 43(5): 1317-1325.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .