岩土力学 ›› 2022, Vol. 43 ›› Issue (9): 2602-2614.doi: 10.16285/j.rsm.2021.1962

• 数值分析 • 上一篇    下一篇

基于扩展Koppejan模型的被动桩−软土 时效性相互作用研究

李双龙1, 2,魏丽敏2,冯胜洋3,何 群2,张开鑫2   

  1. 1. 南昌工程学院 水利与生态工程学院,江西 南昌 330099;2. 中南大学 土木工程学院,湖南 长沙 410075; 3. 南华大学 资源环境与安全工程学院,湖南 衡阳 421001
  • 收稿日期:2021-11-19 修回日期:2022-05-07 出版日期:2022-09-12 发布日期:2022-09-12
  • 通讯作者: 魏丽敏,女,1965年生,博士,教授,博士生导师,主要从事岩土工程方面的教学与科研工作。E-mail: lmwei@csu.edu.cn E-mail: lsl_7631@163.com
  • 作者简介:李双龙,男,1991年生,博士,讲师,主要从事被动桩−土相互作用方面的研究。
  • 基金资助:
    国家自然科学基金资助项目(No.51878671);上海铁路局科研计划项目(No.2013144)。

Time-dependent interactions between passive piles and soft soils based on the extended Koppejan model

LI Shuang-long1, 2, WEI Li-min2, FENG Sheng-yang3, HE Qun2, ZHANG Kai-xin2   

  1. 1. College of Water Conservancy and Ecological Engineering, Nanchang Institute of Technology, Nanchang, Jiangxi 330099, China; 2. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 3. School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
  • Received:2021-11-19 Revised:2022-05-07 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51878671) and the Scientific Research Projects of Shanghai Railway Bureau (2013144).

摘要: 基于一维固结−蠕变试验,综合考虑软土主固结效应和蠕变效应,选择一维 Koppejan 模型刻画软土变形的时效特性,并将该模型以增量形式扩展至三维应力空间,基于 ABAQUS 平台开发相应的材料模型子程序。将该子程序应用于以桩基−堆载现场试验为原型的桩−土耦合作用数值分析,研究长期堆载条件下桩身响应、桩侧附加压力及桩间土拱效应的时效性变化规律,揭示被动桩−软土时效性相互作用机制。结果表明:堆载引发的桩侧附加荷载主要分布在相对软弱土层范围,并随着堆载时间的延长而增大,但其分布范围基本不变;随着堆载时间延长,被动桩段桩间软土的塑性区持续增大,主应力拱拱高持续减小,土拱效应持续弱化,土拱效应的弱化规律随堆载条件的改变而改变;堆载距离越小或堆载强度越大,桩身响应达到稳定增长阶段的时间越长,软土变形对桩身响应的时效性影响愈加显著;软弱土层厚度不同,桩身承受的附加荷载分布范围不同,致使堆载条件和堆载时间对桩身响应分布的影响程度也不同。推导的扩展 Koppejan 模型较好地反映了被动桩基−软土时效性相互作用过程,可为有关桩基长期横向变形的预测与研究提供参考。

关键词: 邻近堆载, 桩?土相互作用, 时效性变形, 扩展Koppejan模型, 数值分析

Abstract: Based on one-dimensional consolidation-creep tests, comprehensively considering primary consolidation and creep effects, the one-dimensional Koppejan model was selected to characterize the time-dependent deformation of soft soils, and the model was extended to the three-dimensional stress space in incremental form, and the corresponding material subroutine was implemented in ABAQUS software. The subroutine was then applied to a numerical analysis considering pile-soil coupled interactions based on a field prototype test. The time-dependent variations of pile response, additional pressure acting on the pile shaft, and the soil-arching between piles under long-term surcharge loads were investigated, and the mechanism of time-dependent interaction between passive piles and soft soils was revealed. Results show that the additional load caused by the surcharge load is mainly distributed in the relatively soft-weak layer, and increases with increasing duration of loading, but its distribution range is unchanged. With increasing duration of loading, the soil plastic zone between the passive piles enlarges, the arch height of principal-stress decreases, and the soil-arching effect continues to weaken. The weakening law of the soil-arching effect changes with the change of surcharge conditions. The smaller the surcharge distance or the greater the surcharge load is, the longer the time for the pile response reach a steady growth stage, and the more significant the time-dependent influence of soft soil deformation on pile response is. For different thicknesses of soft soils, the distribution range of the additional load acting on the pile shaft is different, resulting in different influences of the surcharge load or the loading duration on the pile response distribution. The deduced extended Koppejan model well reflects the process of time-dependent interaction between the pile foundation and soft soils and provides reference for the prediction of the long-term lateral deformation of pile foundations.

Key words: adjacent surcharge load, pile-soil interaction, time-dependent deformation, extended Koppejan model, numerical analysis

中图分类号: 

  • TU473
[1] Muhammad Usman Azhar, 周 辉, 杨凡杰, 高阳, 朱勇, 路新景, 房后国, 耿轶君, . 软弱泥质砂岩地层中输水隧洞稳定性研究[J]. 岩土力学, 2022, 43(S2): 626-639.
[2] 乔亚飞, 唐洁, 顾贇, 丁文其, . 超深地连墙槽壁侧压力演变模式 及其施工扰动分析[J]. 岩土力学, 2022, 43(4): 1083-1092.
[3] 黄福云, 周志明, 庄一舟, 刘帆, 刘名琦, . 整体桥高性能混凝土桩−土相互作用试验研究[J]. 岩土力学, 2022, 43(3): 591-601.
[4] 汪嘉钰, 刘润, 姬永红, 杨旭, 陈广思, 王晓磊, . 筒型基础水平向和抗倾承载力的极限分析上限解[J]. 岩土力学, 2022, 43(3): 777-788.
[5] 蔡灿, 张沛, 孙明光, 杨迎新, 谢松, 蒲治成, 杨显鹏, 高超, 谭政博, . 油气钻井中的分离式冲击−切削复合破岩机制研究[J]. 岩土力学, 2021, 42(9): 2535-2544.
[6] 张建聪, 江权, 郝宪杰, 丰光亮, 李邵军, 汪志林, 樊启祥, . 高应力下柱状节理玄武岩应力−结 构型塌方机制分析[J]. 岩土力学, 2021, 42(9): 2556-2568.
[7] 黄福云, 何凌峰, 单玉麟, 胡晨曦, 周志明, . 整体式桥台−混凝土桩−土相互作用拟静力试验[J]. 岩土力学, 2021, 42(7): 1803-1814.
[8] 赵海鹏, 黎学优, 万建宏, 郑翔之, 刘思威, . 基于高性能有限单元法的多层地基水平 受荷桩受力分析[J]. 岩土力学, 2021, 42(7): 1995-2003.
[9] 庄妍, 李劭邦, 崔晓艳, 董晓强, 王康宇, . 高铁荷载下桩承式路基动力响应及土拱效应研究[J]. 岩土力学, 2020, 41(9): 3119-3130.
[10] 张小玲, 朱冬至, 许成顺, 杜修力, . 强度弱化条件下饱和砂土地基中桩−土 相互作用p-y曲线研究[J]. 岩土力学, 2020, 41(7): 2252-2260.
[11] 张磊, 海维深, 甘浩, 曹卫平, 王铁行, . 水平与上拔组合荷载下柔性单桩 承载特性试验研究[J]. 岩土力学, 2020, 41(7): 2261-2270.
[12] 盛建龙, 韩云飞, 叶祖洋, 程爱平, 黄诗冰, . 粗糙裂隙水、气两相流相对渗透系数模型与数值分析[J]. 岩土力学, 2020, 41(3): 1048-1055.
[13] 朱才辉, 崔 晨, 兰开江, 东永强. 砖-土结构劣化及入侵建筑物拆除 对榆林卫城稳定性影响[J]. 岩土力学, 2019, 40(8): 3153-3166.
[14] 李 宁, 杨 敏, 李国锋. 再论岩土工程有限元方法的应用问题[J]. 岩土力学, 2019, 40(3): 1140-1148.
[15] 郑黎明, 张洋洋, 李子丰, 马平华, 阳鑫军, . 低频波动下考虑孔隙度与压力不同程度变 化的岩土固结渗流分析[J]. 岩土力学, 2019, 40(3): 1158-1168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .