岩土力学 ›› 2022, Vol. 43 ›› Issue (9): 2431-2442.doi: 10.16285/j.rsm.2021.1965

• 基础理论与实验研究 • 上一篇    下一篇

低温−加载作用下白垩系砂岩的变形 破坏特性试验研究

屈永龙1, 2,杨更社2,奚家米2,何晖1,丁潇1,张猛1   

  1. 1. 西安工业大学 建筑工程学院,陕西 西安 710021;2. 西安科技大学 建筑与土木工程学院,陕西 西安 710054
  • 收稿日期:2021-11-22 修回日期:2022-05-06 出版日期:2022-09-12 发布日期:2022-09-12
  • 作者简介:屈永龙,男,1988年生,博士,讲师,主要从事寒区特殊岩土力学与工程方面的研究工作。
  • 基金资助:
    国家自然科学基金项目(No.51774231);陕西省自然科学基础研究计划项目(No.2022JQ-443);陕西省教育厅科研计划项目(No.22JK0416)。

Deformation and failure characteristics of Cretaceous sandstone under low temperature and loading

QU Yong-long1, 2, YANG Geng-she2, XI Jia-mi2, HE Hui1, DING Xiao1, ZHANG Meng1   

  1. 1. School of Civil and Architecture Engineering, Xi’an Technological University, Xi’an, Shaanxi 710021, China; 2. School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China
  • Received:2021-11-22 Revised:2022-05-06 Online:2022-09-12 Published:2022-09-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51774231), the Natural Science Basic Research Program of Shaanxi (2022JQ-443) and the Scientific Research Program Funded by Shaanxi Provincial Education Department (22JK0416).

摘要: 为探索低温和加载作用对陇东地区深厚富水白垩系砂岩的变形破坏特征的影响,利用 MTS-815 伺服岩石力学试验机和扫描电镜开展了不同岩性(中粒砂岩和粗粒砂岩)砂岩在不同温度(−30、−20、−10、−5、25 ℃)和围压(0、4、6、8 MPa)下单轴、三轴压缩试验和微观结构测试,对饱和白垩系砂岩的冻结−加载变形、破坏特征及内部机制进行了系统分析。结果表明,砂岩试样峰前孔隙压密变形较显著,且中粒砂岩更甚,温度降低和围压增大均可减弱压密变形而提高刚度和强度;试样峰后扩容变形明显。随着温度的升高,试样弹性模量 E、剪切模量 及体积模量 K均呈先快速、后缓慢的非线性衰减规律,且相同条件下中粒砂岩总是低于粗粒砂岩;泊松比 m  和拉梅常数 l  的变化规律与其相反;这些变形指标与温度的关系可由统一的指数模型较好表征。负温冻结时,中粒砂岩的冻胀破坏强于粗粒砂岩,呈横向开裂和点状凸起破坏;加载条件下试样破坏模式受岩性、温度和围压影响显著。两种冻结砂岩的变形破坏差异性内在机制是由其颗粒、孔隙等宏微观结构特征决定的。研究结果将为西部寒区软岩力学研究和煤矿冻结井筒设计提供参考。

关键词: 白垩系砂岩, 冻结作用, 变形指标, 破坏特征, 微观结构

Abstract:

To study the effect of both low temperature and loading on the deformation and failure characteristics of water-rich Cretaceous sandstone in Longdong area, the uniaxial and triaxial compression tests and microstructure test on different sandstones (medium and coarse-grained sandstones) under different temperatures (−30, −20, −10, −5 and 25℃) and confining pressures (0, 4, 6 and 8 MPa) were conducted using MTS-815 servo rock mechanics testing machine and scanning electron microscope (SEM). Then the freezing-loading deformation, the failure characteristics and the internal mechanism of saturated Cretaceous sandstone were systematically analyzed. The results show that the pre-peak pore compaction deformation of sandstone samples is significant, and that of medium-grained sandstone is more notable. The decrease in test temperature and the increase in confining pressure can weaken the compaction deformation of samples and increase the rigidity and strength. And the post-peak deformation of samples is accompanied by a significant increase in volume. As the test temperature increases, the elastic modulus E, shear modulus G, and volume modulus Kv of the samples show a nonlinear attenuation trend of first fast and then slow, and these parameters of the medium-grained sandstone are always lower than those of coarse-grained sandstone under the same conditions. But the change laws of Poisson’s ratio m and Lame constant l are opposite. In addition, the relationships between these deformation parameters and test temperature can be well characterized by a unified exponential model. Under the negative temperature condition, the frost heave failure of the medium-grained sandstone is more serious than that of coarse-grained one, mainly in the form of transverse cracking and point-like bulge failure. Moreover, the loading failure mode of frozen sandstone samples is significantly affected by the factors such as lithology, temperature and confining pressure. The internal mechanism of the difference in deformation and failure of the two types of frozen sandstones is determined by their macro- and micro-structure characteristics such as grains and pores. The results obtained in this study are helpful for the development of the soft rock mechanics and the frozen shaft design of the coal mines in western China.

Key words: Cretaceous sandstone, frozen action, deformation parameter, failure characteristics, microstructure

中图分类号: 

  • TU452
[1] 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66.
[2] 雷华阳, 张文振, 霍海峰, 冯双喜, 李其昂, 刘汉磊, . 水汽补给下砂土冻胀量与微观结构参数关联研究[J]. 岩土力学, 2022, 43(9): 2337-2346.
[3] 张津津, 李博, 余闯, 张茂雨, . 矿渣−粉煤灰地聚合物固化砂土力学特性研究[J]. 岩土力学, 2022, 43(9): 2421-2430.
[4] 刘新喜, 李玉, 范子坚, 李盛南, 王玮玮, 董蓬, . 干湿循环作用下单裂隙炭质页岩能量演化与 破坏特征研究[J]. 岩土力学, 2022, 43(7): 1761-1771.
[5] 刘观仕, 赵守道, 牟智, 莫燕坤, 赵青松, . 结构性对膨胀土收缩特性影响的试验研究[J]. 岩土力学, 2022, 43(7): 1772-1780.
[6] 钟文, 朱文韬, 曾鹏, 黄震, 王晓军, 郭钟群, 胡凯建, . 浸矿开采对离子型稀土基岩力学特性的影响研究[J]. 岩土力学, 2022, 43(6): 1481-1492.
[7] 周泽华, 吕艳, 苏生瑞, 刁钰恒, 王祚鹏, 王剑昆, 赵辉, . 花岗岩质边坡地震动力响应及破坏特征 大型振动台试验研究[J]. 岩土力学, 2022, 43(4): 918-931.
[8] 张强, 王军保, 宋战平, 冯世进, 张玉伟, 曾涛, . 循环荷载作用下盐岩微观结构变化及经验疲劳模型[J]. 岩土力学, 2022, 43(4): 995-1008.
[9] 李敏, 于禾苗, 杜红普, 曹保宇, 柴寿喜, . 冻融循环对二灰和改性聚乙烯醇 固化盐渍土力学性能的影响[J]. 岩土力学, 2022, 43(2): 489-498.
[10] 高欢, 翟越, 汪铁楠, 李宇白, 王铭, 李艳, . 主动围压作用下混凝土-花岗岩组合体抗压力学 特性与强度预测模型研究[J]. 岩土力学, 2022, 43(11): 2983-2992.
[11] 李明玉, 孙文静, 黄强, 孙德安, . 全吸力范围生物炭−黏土混合土的土−水特性[J]. 岩土力学, 2022, 43(10): 2717-2725.
[12] 周恒宇, 王修山, 胡星星, 熊志奇, 张小元, . 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42(8): 2089-2098.
[13] 王港, 张先伟, 刘新宇, 徐倚晴, 芦剑锋, . 厦门花岗岩残积土的压缩变形特性及其微观机制[J]. 岩土力学, 2021, 42(12): 3291-3300.
[14] 李伟一, 钱建固, 尹振宇, 周闯, . 间断级配砂土渗流侵蚀现象的计算 流体力学-离散元耦合模拟[J]. 岩土力学, 2021, 42(11): 3191-3201.
[15] 卞康, 陈彦安, 刘建, 崔德山, 李一冉, 梁文迪, 韩啸. 不同吸水时间下页岩卸荷破坏特征的 颗粒离散元研究[J]. 岩土力学, 2020, 41(S1): 355-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .