岩土力学 ›› 2022, Vol. 43 ›› Issue (12): 3241-3248.doi: 10.16285/j.rsm.2022.0020
魏丽1,柴寿喜2,张琳2,李瑶2
WEI Li1, CHAI Shou-xi2, ZHANG Lin2, LI Yao2
摘要: 合成纤维、矿物纤维和植物纤维加筋土,增强了土的强度和抗变形性能。开展冻融作用下的无侧限抗压试验和劈裂抗拉试验,研究聚丙烯纤维、玄武岩纤维和棕榈纤维加筋石灰固化土的抗压和抗拉性能随冻融次数的变化规律。结果表明:未冻融和冻融环境下,聚丙烯纤维加筋固化土、玄武岩纤维加筋固化土和棕榈纤维加筋固化土的最优质量加筋率分别为0.2%、0.2%和0.4%。随冻融次数增加,三类纤维加筋固化土的抗压强度和抗拉强度均呈阶段性下降,纤维加筋固化土的破坏应变均大于石灰固化土。冻融作用下,聚丙烯纤维加筋固化土的抗压强度、抗拉强度和抗变形性能均优于另两类加筋固化土。纤维与土颗粒间的界面作用力和纤维对土的空间约束作用,增强了土的冻融耐久性。对比三类纤维加筋固化土的试验结果,聚丙烯纤维加筋固化土的抗冻融性能最优。
中图分类号:
[1] | 魏丽, 柴寿喜, 刘著, 王沛, 李芳, . 以扫描电镜与核磁共振指标评价冻融纤维 加筋土的抗压强度[J]. 岩土力学, 2022, 43(S2): 163-170. |
[2] | 张涛麟, 耿汉生, 许宏发, 莫家权, 林一帆, 马林建. 钙质砂注浆加固材料制备及固结体性能试验研究[J]. 岩土力学, 2022, 43(S2): 327-336. |
[3] | 李丽华, 方亚男, 肖衡林, 李文涛, 曹毓, 徐可, . 赤泥复合物固化/稳定化镉污染土特性研究[J]. 岩土力学, 2022, 43(S1): 193-202. |
[4] | 张津津, 李博, 余闯, 张茂雨, . 矿渣−粉煤灰地聚合物固化砂土力学特性研究[J]. 岩土力学, 2022, 43(9): 2421-2430. |
[5] | 刘成禹, 郑道哲, 张向向, 陈成海, 曹洋兵, . 冻融温变速率对岩石受载特性的影响规律[J]. 岩土力学, 2022, 43(8): 2071-2082. |
[6] | 汤连生, 王昊, 孙银磊, 刘其鑫, . 干湿过程中花岗岩残积土抗拉强度变化研究[J]. 岩土力学, 2022, 43(7): 1749-1760. |
[7] | 周实际, 杜延军, 倪浩, 孙慧洋, 李江山, 杨玉玲, . 压实度对铁盐稳定化砷、锑污染土特性 的影响及机制研究[J]. 岩土力学, 2022, 43(2): 432-442. |
[8] | 李敏, 于禾苗, 杜红普, 曹保宇, 柴寿喜, . 冻融循环对二灰和改性聚乙烯醇 固化盐渍土力学性能的影响[J]. 岩土力学, 2022, 43(2): 489-498. |
[9] | 高欢, 翟越, 汪铁楠, 李宇白, 王铭, 李艳, . 主动围压作用下混凝土-花岗岩组合体抗压力学 特性与强度预测模型研究[J]. 岩土力学, 2022, 43(11): 2983-2992. |
[10] | 姜彤, 翟天雅, 张俊然, 赵金玓, 王俪锦, 宋陈雨, 潘旭威. 基于粒子图像测速技术的黄土径向劈裂试验研究[J]. 岩土力学, 2021, 42(8): 2120-2126. |
[11] | 乔趁, 王宇, 宋正阳, 李长洪, 侯志强, . 饱水裂隙花岗岩周期冻胀力演化特性试验研究[J]. 岩土力学, 2021, 42(8): 2141-2150. |
[12] | 平琦, 苏海鹏, 马冬冬, 张号, 张传亮, . 不同高温作用后石灰岩物理与动力特性试验研究[J]. 岩土力学, 2021, 42(4): 932-942. |
[13] | 杨爱武, 徐彩丽, 郎瑞卿, 王韬, . 冻融循环作用下城市污泥固化土三维力学 特性及其破坏准则[J]. 岩土力学, 2021, 42(4): 963-975. |
[14] | 余莉, 彭海旺, 李国伟, 张钰, 韩子豪, 祝瀚政. 花岗岩高温−水冷循环作用下的试验研究[J]. 岩土力学, 2021, 42(4): 1025-1035. |
[15] | 陈猛, 崔秀文, 颜鑫, 王浩, 王二磊. 岩石−钢纤维混凝土复合层抗压强度预测模型[J]. 岩土力学, 2021, 42(3): 638-646. |
|