岩土力学 ›› 2023, Vol. 44 ›› Issue (1): 31-42.doi: 10.16285/j.rsm.2022.0221

• 基础理论与实验研究 • 上一篇    下一篇

考虑应变局部化的粗粒料剪切损伤力学机制

赵顺利1, 2,杨之俊1,傅旭东1,方正1   

  1. 1. 武汉大学 土木建筑工程学院,湖北 武汉 430072;2. 黄河勘测规划设计研究院有限公司,河南 郑州 450003
  • 收稿日期:2022-02-28 接受日期:2022-06-18 出版日期:2023-01-16 发布日期:2023-01-12
  • 通讯作者: 方正,男,1966年生,博士,教授,博士生导师,主要从土木工程领域的减灾防灾系统理论研究。E-mail: zfang@whu.edu.cn E-mail:slzhao@whu.edu.cn
  • 作者简介:赵顺利,男,1992年生,博士研究生,主要从事岩土体的勘察测试与本构模型开发等研究工作。
  • 基金资助:
    国家自然科学基金项目(No. 51978540)。

Shear damage mechanism of coarse-grained materials considering strain localization

ZHAO Shun-li1, 2, YANG Zhi-jun1, FU Xu-dong1, FANG Zheng1   

  1. 1. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; 2. Yellow River Engineering Consulting Co., Ltd., Zhengzhou, Henan 450003, China
  • Received:2022-02-28 Accepted:2022-06-18 Online:2023-01-16 Published:2023-01-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51978540).

摘要: 针对粗粒料的应变软化、剪胀等力学特性,通过考虑以剪切带为标志的应变局部化现象,建立了具有广泛适用性的剪切损伤力学模型。损伤模型采用了包体理论中的剪切带数学简化,基于应变等价原理、Weibull分布,推导了粗粒料的应力−应变关系方程。从剪胀作用的机制出发,提出可以描述剪胀弱化的轴向塑性应变和体积塑性应变的非线性函数关系。结合粗粒料三轴压缩试验中的伺服过程,提出了基于遗传算法的损伤模型参数确定方法。通过开展不同围压下的粗粒料三轴压缩试验,对剪切损伤力学模型进行验证,进一步分析了参数演化对粗粒料强度和变形特征的影响。研究结果表明,考虑应变局部化特征的剪切损伤力学模型可以高精度的模拟粗粒料的应变软化和剪胀等特征,有效揭示剪切带内部变形对试样整体宏观变形的影响机制,模型中剪切带参数和围压的关系与粗粒料细观机制一致,计算得到强度组成与颗粒破碎、重组特征较为吻合。

关键词: 粗粒料, 剪切损伤, 应力?应变关系, 应变局部化, 应变软化, 剪胀

Abstract: In view of the mechanical properties of coarse-grained materials, such as strain softening and dilatancy, a generalized shear damage mechanical model with wide applicability was established in this study by considering the strain localization phenomenon marked by shear band. This damage model adopted the mathematical simplification of shear band in the envelope theory, and the stress-strain relationship equation of coarse-grained material was derived based on the strain equivalence principle and Weibull distribution. A nonlinear functional relationship between axial and volumetric plastic strain was proposed to describe the weakening of dilatancy based on the mechanism of dilatancy. Combined with the servo process of coarse-grained materials in triaxial compression tests, a method to determine the parameters of damage model was proposed based on genetic algorithm. By conducting a series of triaxial compression tests under different confining pressures, the shear damage mechanical model was validated, and the effects of the evolution of shear band parameters on the strength and deformation characteristics of coarse-grained materials were further analyzed. The results indicate that the proposed shear damage mechanical model considering the strain localization characteristics can accurately simulate the strain-softening and dilatancy characteristics of coarse-grained materials, and effectively reveal the influence mechanism of the internal deformation of the shear band on the overall macroscopic deformation of the coarse-grained sample. The evolution of the shear band parameters with the surrounding confining pressures in the model was consistent with the mesoscopic mechanism of coarse-grained materials. The strength composition calculated by this model was in good agreement with the micro mechanism, such as the breakage and reorganization of coarse-grained particles.

Key words: coarse-grained material, shear damage, stress-strain equation, strain localization, strain softening, dilatancy

中图分类号: 

  • TU 411
[1] 潘家军, 孙向军, 左永振, 王俊鹏, 卢一为, 韩冰. 骨架孔隙比对粗粒土强度变形特性的影响研究[J]. 岩土力学, 2023, 44(8): 2186-2194.
[2] 张建新, 马昌虎, 郎瑞卿, 孙立强, 杨爱武, 李迪, . 带围压冻融循环下滨海重塑软土力学特性试验研究[J]. 岩土力学, 2023, 44(7): 1863-1874.
[3] 王思远, 蒋明镜, 李承超, 张旭东, . 三轴剪切条件下胶结型深海能源土应变局部化离散元模拟分析[J]. 岩土力学, 2023, 44(11): 3307-3317.
[4] 王冬勇, 陈曦, 王方宇, 彭丽云, 齐吉琳, . 基于罚函数偶应力理论的土体应变局部化研究[J]. 岩土力学, 2022, 43(S2): 533-540.
[5] 蒋长宝, 余塘, 魏文辉, 段敏克, 杨阳, 魏财, . 加卸载应力作用下煤岩渗透率演化模型研究[J]. 岩土力学, 2022, 43(S1): 13-22.
[6] 刘燕晶, 王路君, 朱斌, 陈云敏, . 考虑填充和黏结作用的含水合物 沉积物弹塑性本构模型[J]. 岩土力学, 2022, 43(9): 2471-2482.
[7] 董建华, 徐斌, 吴晓磊, 连博, . 隧道分级让压支护作用下围岩 弹塑性变形全过程解析[J]. 岩土力学, 2022, 43(8): 2123-2135.
[8] 张树明, 蒋关鲁, 叶雄威, 蔡俊峰, 袁胜洋, 罗斌, . 基于破损参数简化的二元介质冻结粉 细砂土本构模型[J]. 岩土力学, 2022, 43(7): 1854-1864.
[9] 焦钰祺, 贺林林, 梁越, 刘旭菲, . 考虑结构性黏土应变软化效应的 桩靴竖向承载特性研究[J]. 岩土力学, 2022, 43(5): 1374-1382.
[10] 王一伟, 刘 润, 孙若晗, 许泽伟. 基于抗转模型的颗粒材料宏−细观关系研究[J]. 岩土力学, 2022, 43(4): 945-956.
[11] 王永红, 杜文, 张国辉, 宋扬, . 基于广义张−朱强度准则的深埋隧道 围岩塑性分析及应用探讨[J]. 岩土力学, 2022, 43(3): 819-830.
[12] 朱文波, 戴国亮, 王博臣, 龚维明, 孙捷, 胡皓, . 吸力式沉箱底部土体循环特性 及其等效循环蠕变模型研究[J]. 岩土力学, 2022, 43(2): 466-478.
[13] 张涛, 李涛, 冯硕. 描述饱和黏性土应变软化的弹塑性双面模型[J]. 岩土力学, 2022, 43(10): 2757-2767.
[14] 曹朔, 喻勇, 汪波, . 基于D-P准则和西原模型的圆形隧道 黏弹−黏塑性解[J]. 岩土力学, 2021, 42(7): 1925-1932.
[15] 杨爱武, 徐彩丽, 郎瑞卿, 王韬, . 冻融循环作用下城市污泥固化土三维力学 特性及其破坏准则[J]. 岩土力学, 2021, 42(4): 963-975.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 刚,李术才,王明斌. 渗透压力作用下加锚裂隙岩体围岩稳定性研究[J]. , 2009, 30(9): 2843 -2849 .
[2] 介玉新,杨光华. 基于广义位势理论的弹塑性模型的修正方法[J]. , 2010, 31(S2): 38 -42 .
[3] 杨建民,郑 刚. 基坑降水中渗流破坏归类及抗突涌验算公式评价[J]. , 2009, 30(1): 261 -264 .
[4] 周 华,王国进,傅少君,邹丽春,陈胜宏. 小湾拱坝坝基开挖卸荷松弛效应的有限元分析[J]. , 2009, 30(4): 1175 -1180 .
[5] 叶 飞,朱合华,何 川. 盾构隧道壁后注浆扩散模式及对管片的压力分析[J]. , 2009, 30(5): 1307 -1312 .
[6] 罗 强 ,王忠涛 ,栾茂田 ,杨蕴明 ,陈培震. 非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J]. , 2011, 32(S1): 732 -0737 .
[7] 王云岗 ,章 光 ,胡 琦. 斜桩基础受力特性研究[J]. , 2011, 32(7): 2184 -2190 .
[8] 龚维明,黄 挺,戴国亮. 海上风电机高桩基础关键参数试验研究[J]. , 2011, 32(S2): 115 -121 .
[9] 汪成兵. 均质岩体中隧道围岩破坏过程的试验与数值模拟[J]. , 2012, 33(1): 103 -108 .
[10] 夏艳华 ,白世伟 . 基于水平集的复杂三维地层模型建模及在地下工程中的应用研究[J]. , 2012, 33(5): 1445 -1450 .