岩土力学 ›› 2023, Vol. 44 ›› Issue (1): 43-53.doi: 10.16285/j.rsm.2022.0252

• 基础理论与实验研究 • 上一篇    下一篇

纤维加筋高钙地聚物固化高黏尾砂的 强度特性及机制分析

李源1, 2, 3, 4,魏明俐1, 3, 5,刘磊1, 3, 4, 6,威巍1, 2,陈亿军1, 3, 6   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 中国科学院武汉岩土力学研究所 污染泥土科学与工程湖北省重点实验室,湖北 武汉 430071; 4. 中国科学院武汉岩土力学研究所-香港理工大学固体废弃物科学联合实验室,湖北 武汉 430071; 5. 江苏中宜生态土研究院有限公司,江苏 宜兴 214200;6. 武汉中科固废资源产业技术研究院有限公司,湖北 武汉 430070
  • 收稿日期:2022-03-04 接受日期:2022-04-02 出版日期:2023-01-16 发布日期:2023-01-12
  • 通讯作者: 刘磊,男,1982年生,博士,研究员,主要从事固体废弃物安全处置方面的研究工作。E-mail: lliu@whrsm.ac.cn E-mail:liyuan18@mails.ucas.ac.cn
  • 作者简介:李源,男,1996年生,博士研究生,主要从事环境岩土方面的研究工作。
  • 基金资助:
    国家自然科学基金重大科研仪器研制项目(No. 51827814);内蒙古自治区科技重大项目(No. E139320101);湖北省杰出青年基金 (No. 2021CFA096)。

Strength characteristics and mechanism analysis of fiber reinforced highly cohesive tailings solidified using high-calcium geopolymer

LI Yuan1, 2,3, 4, WEI Ming-li1, 3, 5, LIU Lei1, 3,4,6, WEI Wei1, 2 , CHEN Yi-jun1, 3, 6   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Hubei Province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 4. IRSM-CAS/HK Poly. Univ. Joint Laboratory on Solid Waste Science, Wuhan, Hubei 430071, China; 5. Jiangsu Institute of Zoneco Co., Ltd., Yixing, Jiangsu 214200, China; 6. Wuhan CAS-ITRI Solid Waste Resources Co., Ltd., Wuhan, Hubei 430070, China
  • Received:2022-03-04 Accepted:2022-04-02 Online:2023-01-16 Published:2023-01-12
  • Supported by:
    This work was supported by the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China (51827814); the Major Science and Technology Project of Inner Mongolia Autonomous Region (No. E139320101) and the Foundation for Distinguished Young Scholars of Hubei Province (2021CFA096).

摘要: 高黏尾砂固化处理是其资源化利用的重要手段之一。以高黏铁尾砂为对象,开展了高钙地聚物固化尾砂的强度特性试验,分析了玄武岩纤维掺量和干湿循环对固化体强度的影响。围绕固化体的微观胶结行为、无侧限抗压强度、干湿侵蚀响应参数(强度、质量损失、电化学指标)展开讨论,试验发现:(1)纤维加筋增大了强度,0.5%为最优掺量(强度提升29.1%),相当于降低约2%的固化剂用量;(2)纤维−水化产物−尾砂以胶结和摩擦咬合作用相结合,适量纤维导致颗粒间产生微细孔隙,微孔隙的存在增加了持水能力;(3)干湿循环破坏胶结作用,6级循环后达到稳定,纤维对提升固化体抗干湿性不显著。以上成果为弄清固化尾砂强度演化机制及耐久性提供了理论支撑和方法借鉴。

关键词: 高黏铁尾砂, 短切玄武岩纤维, 高钙地聚物, 微观胶结行为, 干湿循环

Abstract: Solidification treatment of highly cohesive tailings is one of the important means for resource utilization. Highly cohesive iron tailings were taken as the object to carry out strength characteristic experiments of solidified tailings using high-calcium geopolymer to analyze the impacts of different dosages of chopped basalt fiber and dry-wet cycles. The micro-cementation behavior, unconfined compressive strength, and the response parameters after dry-wet cycles (strength, mass loss, and electrochemical properties) of the fiber-reinforced solidified materials were discussed. It is concluded that: 1) Adding fiber increased the strength. 0.5% was the optimal dosage (strength increased by 29.1%), which is equivalent to reducing the dosage of geopolymer by about 2%. 2) Fiber, hydration products and tailings were bonded by cementation and frictional occlusion. An appropriate amount of fiber could reduce pore connectivity and increase the capillary water holding capacity. 3) The dry-wet cycles destroyed the cementation, and the damage was stable after the sixth cycle. The fiber has no obvious advantage in improving the dry-wet durability of the solidified materials. The above results provide theoretical support and method reference for clarifying the strength characteristics and durability of solidified tailings.

Key words: highly cohesive iron tailings, chopped basalt fiber, high-calcium geopolymer, micro-cementation behavior, dry-wet cycles

中图分类号: 

  • TU 411
[1] 程树范, 曾亚武, 高睿, 李涵, . 干湿作用下受荷石膏质泥岩的不可逆膨胀特征[J]. 岩土力学, 2023, 44(增刊): 332-340.
[2] 胡 智, 李志超, 李丽华, 严鑫, 詹伟. 基于CT的干湿循环−动荷载贯序耦合作用下 压实粉质黏土细观结构特征研究[J]. 岩土力学, 2023, 44(10): 2860-2870.
[3] 刘新喜, 李玉, 范子坚, 李盛南, 王玮玮, 董蓬, . 干湿循环作用下单裂隙炭质页岩能量演化与 破坏特征研究[J]. 岩土力学, 2022, 43(7): 1761-1771.
[4] 陈锐, 张星, 郝若愚, 包卫星. 干湿循环下地聚合物固化黄土强度 劣化机制与模型研究[J]. 岩土力学, 2022, 43(5): 1164-1174.
[5] 柴少波, 宋浪, 刘欢, 阿比尔的, 柴连增, . 酸性干湿循环下充填节理岩石劣化性能试验研究[J]. 岩土力学, 2022, 43(11): 2993-3002.
[6] 许健, 武智鹏, 陈辉, . 干湿循环效应下玄武岩纤维加筋黄土 三轴剪切力学行为研究[J]. 岩土力学, 2022, 43(1): 28-36.
[7] 刘越, 陈东霞, 王晖, 于佳静, . 干湿循环下考虑裂隙发育的残积土边坡响应分析[J]. 岩土力学, 2021, 42(7): 1933-1943.
[8] 郝延周, 王铁行, 程磊, 金鑫, . 考虑干湿循环影响的压实黄土结构性本构关系[J]. 岩土力学, 2021, 42(11): 2977-2986.
[9] 胡智, 艾聘博, 李志超, 马强, 李丽华, . 干湿循环−动荷载贯序耦合作用下压实粉质 黏土电阻率演化规律[J]. 岩土力学, 2021, 42(10): 2722-2732.
[10] 刘俊东, 唐朝生, 曾浩, 施斌. 干湿循环条件下黏性土干缩裂隙演化特征[J]. 岩土力学, 2021, 42(10): 2763-2772.
[11] 张宗堂, 高文华, 张志敏, 唐骁宇, 邬俊, . 基于Weibull分布的红砂岩颗粒崩解破碎演化规律[J]. 岩土力学, 2020, 41(3): 877-885.
[12] 程昊, 唐辉明, 吴琼, 雷国平. 一种考虑水力滞回效应的非饱和土弹塑性扩展 剑桥本构模型显式算法有限元实现[J]. 岩土力学, 2020, 41(2): 676-686.
[13] 谢辉辉, 许振浩, 刘清秉, 胡桂阳, . 干湿循环路径下弱膨胀土峰值及残余强度演化研究[J]. 岩土力学, 2019, 40(S1): 245-252.
[14] 任克彬, 王 博, 李新明, 尹 松, . 毛细水干湿循环作用下土遗址的强度特性 与孔隙分布特征[J]. 岩土力学, 2019, 40(3): 962-970.
[15] 江强强, 刘路路, 焦玉勇, 王 浩, . 干湿循环下滑带土强度特性与微观结构试验研究[J]. 岩土力学, 2019, 40(3): 1005-1012.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 刚,李术才,王明斌. 渗透压力作用下加锚裂隙岩体围岩稳定性研究[J]. , 2009, 30(9): 2843 -2849 .
[2] 介玉新,杨光华. 基于广义位势理论的弹塑性模型的修正方法[J]. , 2010, 31(S2): 38 -42 .
[3] 杨建民,郑 刚. 基坑降水中渗流破坏归类及抗突涌验算公式评价[J]. , 2009, 30(1): 261 -264 .
[4] 周 华,王国进,傅少君,邹丽春,陈胜宏. 小湾拱坝坝基开挖卸荷松弛效应的有限元分析[J]. , 2009, 30(4): 1175 -1180 .
[5] 叶 飞,朱合华,何 川. 盾构隧道壁后注浆扩散模式及对管片的压力分析[J]. , 2009, 30(5): 1307 -1312 .
[6] 罗 强 ,王忠涛 ,栾茂田 ,杨蕴明 ,陈培震. 非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J]. , 2011, 32(S1): 732 -0737 .
[7] 王云岗 ,章 光 ,胡 琦. 斜桩基础受力特性研究[J]. , 2011, 32(7): 2184 -2190 .
[8] 龚维明,黄 挺,戴国亮. 海上风电机高桩基础关键参数试验研究[J]. , 2011, 32(S2): 115 -121 .
[9] 汪成兵. 均质岩体中隧道围岩破坏过程的试验与数值模拟[J]. , 2012, 33(1): 103 -108 .
[10] 夏艳华 ,白世伟 . 基于水平集的复杂三维地层模型建模及在地下工程中的应用研究[J]. , 2012, 33(5): 1445 -1450 .