岩土力学 ›› 2023, Vol. 44 ›› Issue (1): 43-53.doi: 10.16285/j.rsm.2022.0252
李源1, 2, 3, 4,魏明俐1, 3, 5,刘磊1, 3, 4, 6,威巍1, 2,陈亿军1, 3, 6
LI Yuan1, 2,3, 4, WEI Ming-li1, 3, 5, LIU Lei1, 3,4,6, WEI Wei1, 2 , CHEN Yi-jun1, 3, 6
摘要: 高黏尾砂固化处理是其资源化利用的重要手段之一。以高黏铁尾砂为对象,开展了高钙地聚物固化尾砂的强度特性试验,分析了玄武岩纤维掺量和干湿循环对固化体强度的影响。围绕固化体的微观胶结行为、无侧限抗压强度、干湿侵蚀响应参数(强度、质量损失、电化学指标)展开讨论,试验发现:(1)纤维加筋增大了强度,0.5%为最优掺量(强度提升29.1%),相当于降低约2%的固化剂用量;(2)纤维−水化产物−尾砂以胶结和摩擦咬合作用相结合,适量纤维导致颗粒间产生微细孔隙,微孔隙的存在增加了持水能力;(3)干湿循环破坏胶结作用,6级循环后达到稳定,纤维对提升固化体抗干湿性不显著。以上成果为弄清固化尾砂强度演化机制及耐久性提供了理论支撑和方法借鉴。
中图分类号:
[1] | 程树范, 曾亚武, 高睿, 李涵, . 干湿作用下受荷石膏质泥岩的不可逆膨胀特征[J]. 岩土力学, 2023, 44(增刊): 332-340. |
[2] | 胡 智, 李志超, 李丽华, 严鑫, 詹伟. 基于CT的干湿循环−动荷载贯序耦合作用下 压实粉质黏土细观结构特征研究[J]. 岩土力学, 2023, 44(10): 2860-2870. |
[3] | 刘新喜, 李玉, 范子坚, 李盛南, 王玮玮, 董蓬, . 干湿循环作用下单裂隙炭质页岩能量演化与 破坏特征研究[J]. 岩土力学, 2022, 43(7): 1761-1771. |
[4] | 陈锐, 张星, 郝若愚, 包卫星. 干湿循环下地聚合物固化黄土强度 劣化机制与模型研究[J]. 岩土力学, 2022, 43(5): 1164-1174. |
[5] | 柴少波, 宋浪, 刘欢, 阿比尔的, 柴连增, . 酸性干湿循环下充填节理岩石劣化性能试验研究[J]. 岩土力学, 2022, 43(11): 2993-3002. |
[6] | 许健, 武智鹏, 陈辉, . 干湿循环效应下玄武岩纤维加筋黄土 三轴剪切力学行为研究[J]. 岩土力学, 2022, 43(1): 28-36. |
[7] | 刘越, 陈东霞, 王晖, 于佳静, . 干湿循环下考虑裂隙发育的残积土边坡响应分析[J]. 岩土力学, 2021, 42(7): 1933-1943. |
[8] | 郝延周, 王铁行, 程磊, 金鑫, . 考虑干湿循环影响的压实黄土结构性本构关系[J]. 岩土力学, 2021, 42(11): 2977-2986. |
[9] | 胡智, 艾聘博, 李志超, 马强, 李丽华, . 干湿循环−动荷载贯序耦合作用下压实粉质 黏土电阻率演化规律[J]. 岩土力学, 2021, 42(10): 2722-2732. |
[10] | 刘俊东, 唐朝生, 曾浩, 施斌. 干湿循环条件下黏性土干缩裂隙演化特征[J]. 岩土力学, 2021, 42(10): 2763-2772. |
[11] | 张宗堂, 高文华, 张志敏, 唐骁宇, 邬俊, . 基于Weibull分布的红砂岩颗粒崩解破碎演化规律[J]. 岩土力学, 2020, 41(3): 877-885. |
[12] | 程昊, 唐辉明, 吴琼, 雷国平. 一种考虑水力滞回效应的非饱和土弹塑性扩展 剑桥本构模型显式算法有限元实现[J]. 岩土力学, 2020, 41(2): 676-686. |
[13] | 谢辉辉, 许振浩, 刘清秉, 胡桂阳, . 干湿循环路径下弱膨胀土峰值及残余强度演化研究[J]. 岩土力学, 2019, 40(S1): 245-252. |
[14] | 任克彬, 王 博, 李新明, 尹 松, . 毛细水干湿循环作用下土遗址的强度特性 与孔隙分布特征[J]. 岩土力学, 2019, 40(3): 962-970. |
[15] | 江强强, 刘路路, 焦玉勇, 王 浩, . 干湿循环下滑带土强度特性与微观结构试验研究[J]. 岩土力学, 2019, 40(3): 1005-1012. |
|