岩土力学 ›› 2023, Vol. 44 ›› Issue (1): 251-258.doi: 10.16285/j.rsm.2022.0295

• 基础理论与实验研究 • 上一篇    下一篇

冻土/岩的液相吸力与固相冰压作用机制

陈汉青1, 2,程桦1, 3, 4,荣传新1,蔡海兵1,姚直书1   

  1. 1. 安徽理工大学 土木建筑学院,安徽 淮南 232001;2. 深圳大学 土木与交通工程学院,广东 深圳 518060;3. 安徽大学 资源与环境学院 安徽 合肥 230601;4. 安徽建筑大学 安徽省建筑结构与地下工程重点实验室,安徽 合肥 230601
  • 收稿日期:2022-03-14 接受日期:2022-05-24 出版日期:2023-01-16 发布日期:2023-01-13
  • 通讯作者: 程桦,男,1956年生,博士,教授,博士生导师,主要从事人工冻结法和地下结构等方面的科研工作。E-mail: hcheng@aust.edu.cn E-mail:hanqingchen@139.com
  • 作者简介:陈汉青,男,1989年生,博士,博士后,主要从事冻土力学、冻胀机制等方面的科研工作。
  • 基金资助:
    国家自然科学基金资助项目(No. 51874005,No. 51878005,No. 51778004)

Action mechanism between liquid-phase suction and solid-phase ice pressure in frozen soil/rock

CHEN Han-qing1, 2, CHENG Hua1, 3, 4, RONG Chuan-xin1, CAI Hai-bing1, YAO Zhi-shu1   

  1. 1. College of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China; 3. College of Resources and Environment, Anhui University, Hefei, Anhui 230601, China; 4. Anhui Province Key Laboratory of Building Structure and Underground Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • Received:2022-03-14 Accepted:2022-05-24 Online:2023-01-16 Published:2023-01-13
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51874005, 51878005, 51778004).

摘要: 为研究冻土/岩内液相吸力和固相冰压在冻结过程中的作用机制,首先根据热力学基本原理,统一了不同边界条件下的理论冰压方程;然后,联立广义Clapeyron方程和 Gibbs-Thomson 方程,在阐释液相吸力和固相冰压物理意义基础上,给出了弯曲界面液相水的冻结温度方程;最后,将冻结温度方程引入冻结毛细管模型,将液相吸力方程代入达西定律,分别对固相冰压和液相吸力作用机制进行验证。研究表明:(1)平衡状态下的理论冰压仅与温度线性相关,与边界条件无关;(2)液相吸力来源于理论吸力与固相冰压抵消因子之差,为水分迁移统一驱动力,当固相冰压趋近于理论冰压时,液相吸力趋近于0;(3)固相冰压为绝对压力,可抵消液相吸力,而液相吸力为相对吸力,不可抵消固相冰压;(4)孔隙内的总压力仅为固相冰压,在毛细管冻结时,可达到平衡状态下的理论冰压,故遵循冰压法分凝冰形成机制。研究结果揭示了冻土/岩的液相吸力与固相冰压作用机制,对完善现有冻胀理论具有较高的理论价值和科学意义。

关键词: 液相吸力, 固相冰压, 理论冰压, 弯曲界面, 冻结温度

Abstract: In order to study the interaction mechanism between liquid-phase suction and solid-phase ice pressure in frozen soil / rock, the theoretical ice pressure equations under different boundary conditions are first unified according to the fundamental thermodynamics. Then, by combining the generalized Clapeyron equation and the Gibbs-Thomson equation, the freezing temperature equation of liquid phase water at curved interface is given on the basis of interpretation of the physical significance of liquid-phase suction and solid-phase ice pressure. Finally, the freezing temperature equation is introduced into the frozen capillary model, and the liquid-phase suction equation is substituted into Darcy's law to verify the action mechanism of solid-phase ice pressure and liquid-phase suction respectively. The results show that: 1) The theoretical ice pressure in equilibrium state is only linearly related to temperature and has nothing to do with the boundary conditions. 2) The liquid-phase suction stems from the difference between the theoretical suction and the offset factor of solid-phase ice pressure, and it is the unified driving force for water migration, and when the solid-phase ice pressure approaches the theoretical ice pressure, the liquid-phase suction tends to zero. 3) The solid-phase ice pressure is an absolute pressure, which can offset the liquid-phase suction, while the liquid-phase suction is a relative suction and cannot offset the solid-phase ice pressure. 4) The total pressure in the pores is only the solid-phase ice pressure and it can reach the theoretical ice pressure in equilibrium when the capillary is frozen, so it follows the formation mechanism of segregation ice by "ice pressure method". This research reveals the interaction mechanism between liquid-phase suction and solid-phase ice pressure in frozen soil / rock, which has high theoretical value and scientific significance for improving the existing frost heave theory.

Key words: liquid-phase suction, solid-phase ice pressure, theoretical ice pressure, curved interface, freezing temperature

中图分类号: 

  • TU 445
[1] 孔令明, 梁珂, 彭丽云. 比表面积对土冻结特征曲线影响的试验研究[J]. 岩土力学, 2021, 42(7): 1883-1893.
[2] 孟祥传, 周家作, 韦昌富, 张坤, 沈正艳, 杨周洁, . 盐分对土的冻结温度及未冻水含量的影响研究[J]. 岩土力学, 2020, 41(3): 952-960.
[3] 杨 昊,张晋勋,单仁亮,武福美,郭志明,. 冻结饱水单裂隙岩体力学特性试验研究[J]. , 2018, 39(4): 1245-1255.
[4] 周家作 ,谭 龙 ,韦昌富 ,魏厚振,. 土的冻结温度与过冷温度试验研究[J]. , 2015, 36(3): 777-785.
[5] 姜耀东,赵毅鑫,周 罡,孙 磊,秦 玮. 广州地铁超长水平冻结多参量监测分析[J]. , 2010, 31(1): 158-164.
[6] 于琳琳,徐学燕. 人工侧向冻结条件下土的冻结试验[J]. , 2009, 30(1): 231-235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 乾增珍,鲁先龙,丁士君. 风积沙地基斜柱基础上拔水平力组合荷载试验[J]. , 2009, 30(1): 257 -260 .
[2] 李新平,代翼飞,刘金焕,曾 明,刘立胜,张开广. 钢管爆炸破坏的数值模拟分析与试验研究[J]. , 2009, 30(S1): 5 -9 .
[3] 曹文贵,赵 衡,张永杰,张 玲. 考虑体积变化影响的岩石应变软硬化损伤本构模型及参数确定方法[J]. , 2011, 32(3): 647 -654 .
[4] 王应铭,李肖伦. 郑西客专陕西段路基湿陷性黄土地基处理简介[J]. , 2009, 30(S2): 283 -286 .
[5] 黄小兰 ,杨春和 ,陈 锋 ,李银平 ,李应芳. 潜江地区层状盐岩天然气储库密闭性评价研究[J]. , 2011, 32(5): 1473 -1478 .
[6] 许福乐 ,王恩元 ,宋大钊 ,宋晓艳 ,魏明尧. 煤岩破坏声发射强度长程相关性和多重分形分布研究[J]. , 2011, 32(7): 2111 -2116 .
[7] 牛 雷,姚仰平,崔文杰,万 征. 超固结非饱和土本构关系的三维化方法[J]. , 2011, 32(8): 2341 -2345 .
[8] 萧富元 ,王建力 ,邵厚洁. 深埋脆性岩石力学参数评估与变形特性探讨[J]. , 2011, 32(S2): 109 -114 .
[9] 刘奉银 ,张 昭 ,周 冬 ,赵旭光 ,朱 良. 密度和干湿循环对黄土土-水特征曲线的影响[J]. , 2011, 32(S2): 132 -136 .
[10] 吴贤振 ,刘祥鑫 ,梁正召 ,游 勋 ,余 敏 . 不同岩石破裂全过程的声发射序列分形特征试验研究[J]. , 2012, 33(12): 3561 -3569 .